GROUP TAB LOCATOR

	Introduction
0	Lubrication & Maintenance
2	Suspension
3	Differential & Driveline
5	Brakes
7	Cooling
8A	Audio/Video
8B	Chime/Buzzer
8C	Clock
8E	Electronic Control Modules
8F	Engine Systems
8G	Heated Systems
8H	Horn
81	Ignition Control
8J	Instrument Cluster
8L	Lamps
8M	Message Systems
8N	Power Systems
8Ns	Power Systems
80	Restraints
8P	Speed Control
9 0	Vehicle Theft Security
8R	Wipers/Washers
8T	Navigation/Telecommunication
8W	Wiring
9	Engine
11	Exhaust System
13	Frame & Bumpers
14	Fuel System
14s	Fuel System
19	Steering
19s	Steering
21	Transmission/Transaxle
21s	Transmission/Transaxle
22	Tires/Wheels
23	Body
24	Heating & Air Conditioning
25	Emissions Control
	Component and System Index
Servi	ce Manual Comment Forms (Rear of Manual)

CS-INTRODUCTION 1

INTRODUCTION

TABLE OF C	CONTENTS
page	page
BODY CODE PLATE DESCRIPTION	METRIC SYSTEM 6 DESCRIPTION 6 TORQUE REFERENCES 8 DESCRIPTION 8 VEHICLE IDENTIFICATION NUMBER 9 DESCRIPTION 9 VEHICLE CERTIFICATION LABEL 10 VECI LABEL DESCRIPTION 10 VECI LABEL DESCRIPTION 10
BODY CODE PLATE	BODY CODE PLATE – LINE 3
The Body Code Plate (Fig. 1) is located in the engine compartment on the right headlamp mounting bracket. There are seven lines of information on the body code plate. Lines 4, 5, 6, and 7 are not used to define service information. Information reads from left to right, starting with line 3 in the center of the plate to line 1 at the bottom of the plate. 1	DIGITS 1 THROUGH 12 Vehicle Order Number DIGITS 13 THROUGH 17 Open Space DIGITS 18 AND 19 Vehicle Shell Line • CS DIGIT 20 Carline • Chrysler FWD • M = Pacifica AWD • F = Pacifica DIGIT 21 Price Class • 5 = P (Premium) • 6 = S (Sport) DIGITS 22 AND 23
Fig. 1 BODY CODE PLATE 1 - PRIMARY PAINT 2 - SECONDARY PAINT 3 - VINYL ROOF	Body Type • 8 = Sport Utility 4 Door BODY CODE PLATE LINE 2

DIGITS 1, 2 AND 3

Open Space

DIGIT 4

Paint Procedure

4 - VEHICLE ORDER NUMBER

5 - CAR LINE SHELL

9 - TRANSMISSION

7 - ENGINE

10 - MARKET 11 - VIN

8 - TRIM

6 - PAINT PROCEDURE

2 INTRODUCTION — CS

BODY CODE PLATE (Continued)

DIGITS 5 THROUGH 7

Primary Paint (Refer to 23 - BODY/PAINT - SPEC-IFICATIONS).

DIGIT 8 AND 9

Open Space

DIGITS 10 THROUGH 12

Secondary Paint

DIGIT 13 AND 14

Open Space

DIGITS 15 THROUGH 18

Interior Trim Code

DIGIT 19

Open Space

DIGITS 20, 21, AND 22

Engine Code

• EGN = 3.5L 6 Cyl. 24 Valve Gasoline (MPI)

DIGIT 23

Open Space

BODY CODE PLATE LINE 1

DIGITS 1, 2, AND 3

Transaxle Codes

- DGB = 4-Speed Automatic Transaxle
- DGL = 41AE/TE 4-Speed Electronic Automatic

DIGIT 4

Open Space

DIGIT 5

Market Code

- C = Canada
- B = International
- M = Mexico
- U = United States

DIGIT 6

Open Space

DIGITS 7 THROUGH 23

Vehicle Identification Number

• Refer to Vehicle Identification Number (VIN) paragraph for proper breakdown of VIN code.

IF TWO BODY CODE PLATES ARE REQUIRED

The last code shown on either plate will be followed by END. When two plates are required, the last code space on the first plate will indicate (CTD)

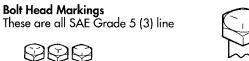
When a second plate is required, the first four spaces of each line will not be used due to overlap of the plates.

FASTENER IDENTIFICATION

DESCRIPTION

The SAE bolt strength grades range from grade 2 to grade 8. The higher the grade number, the greater the bolt strength. Identification is determined by the line marks on the top of each bolt head. The actual bolt strength grade corresponds to the number of line marks plus 2. The most commonly used metric bolt strength classes are 9.8 and 10.9. The metric strength class identification number is imprinted on the head of the bolt. The higher the class number, the greater the bolt strength. Some metric nuts are imprinted with a single-digit strength class on the nut face. Refer to the Fastener Identification and Fastener Strength Charts (Fig. 2) and (Fig. 3).

FASTENER IDENTIFICATION (Continued)


Bolt Markings and Torque - Metric

Commercial Steel Class 12.9 10.9 **Bolt Head Markings** 9.8 12.9 10.9

Body Size		Toi	rque			Tor	que		Torque					
Diam.	Cast Iron Aluminum				Cast Iron Aluminum				Cas	t Iron	Alun	ninum		
mm	N•m	ft-lb	N•m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb		
6	9	5	7	4	14	9	11	7	14	9	11	7		
7	14	9	11	7	18	14	14	11	23	18	18	14		
8	25	18	18	14	32	23	25	18	36	27	28	21		
10	40	30	30	25	60	45	45	35	70	50	55	40		
12	70	55	55	40	105	<i>7</i> 5	80	60	125	95	100	<i>7</i> 5		
14	115	85	90	65	160	120	125	95	195	145	150	110		
16	180	130	140	100	240	175	190	135	290	210	220	165		
18	230	170	180	135	320	240	250	185	400	290	310	230		

Bolt Markings and Torque Values - U.S. Customary

8 **SAE Grade Number** 5

		Bolt Torque	e - Grade 5 B	olt	Bol				
Body Size	Cas	t Iron	Alun	าiทบm	Cast	Iron	Alum	inum	_
	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	
1/4 - 20	9	7	8	6	15	11	12	9	
- 28	12	9	9	7	18	13	14	10	
5/16 - 18	20	15	16	12	30	22	24	18	
- 24	23	1 <i>7</i>	19	14	33	24	25	19	
3/8 - 16	40	30	25	20	55	40	40	30	
- 24	40	30	35	25	60	45	45	35	
7/16 - 14	60	45	45	35	90	65	65	50	
- 20	65	50	55	40	95	<i>7</i> 0	<i>7</i> 5	55	
1/2 - 13	95	70	<i>7</i> 5	55	130	95	100	<i>7</i> 5	
- 20	100	<i>7</i> 5	80	60	150	110	120	90	
9/16 - 12	135	100	110	80	190	140	150	110	
- 18	150	110	115	85	210	155	1 <i>7</i> 0	125	
5/8 - 11	180	135	150	110	255	190	205	150	
- 18	210	155	160	120	290	215	230	1 <i>7</i> 0	
3/4 - 10	325	240	255	190	460	340	365	270	
- 16	365	270	285	210	515	380	410	300	
7/8 - 9	490	360	380	280	745	550	600	440	
- 14	530	390	420	310	825	610	660	490	
1 - 8	<i>7</i> 20	530	<i>57</i> 0	420	1100	820	890	660	
- 14	800	590	650	480	1200	890	960	<i>7</i> 10	

FASTENER IDENTIFICATION (Continued)

HOW TO DETERMINE BOLT STRENGTH

	Mark	Class		Mark	Class			
Hexagon head bolt	Bolt 6— head No. 7— 8— 9— 10— 11—	4T 5T 6T 7T 8T 9T 10T	Stud bolt	No mark	4 T			
	No mark	4 T						
Hexagon flange bolt w/washer hexagon bolt	No mark	4 T		Grooved	6 T			
Hexagon head bolt	Two protruding lines	5Т						
Hexagon flange bolt w/washer hexagon bolt	Two protruding lines	6T	Welded bolt					
Hexagon head bolt	Three protruding lines	71			4 T			
Hexagon head bolt	Four protruding lines	8Т						

CS - INTRODUCTION

FASTENER USAGE

DESCRIPTION

DESCRIPTION - FASTENER USAGE

WARNING: USE OF AN INCORRECT FASTENER MAY RESULT IN COMPONENT DAMAGE OR PER-SONAL INJURY.

Fasteners and torque specifications references in this Service Manual are identified in metric and SAE format.

During any maintenance or repair procedures, it is important to salvage all fasteners (nuts, bolts, etc.) for reassembly. If the fastener is not salvageable, a fastener of equivalent specification must be used.

DESCRIPTION - THREADED HOLE REPAIR

Most stripped threaded holes can be repaired using a Helicoil®. Follow the vehicle or Helicoil® recommendations for application and repair procedures.

INTERNATIONAL SYMBOLS

DESCRIPTION

The graphic symbols illustrated in the following International Control and Display Symbols Chart (Fig. 4) are used to identify various instrument controls. The symbols correspond to the controls and displays that are located on the instrument panel.

≣ ○	# <u>O</u>	- \'\' -	♦	5	6
7	8	9	10	11	12
13	14	15	- +	17	18

Fig. 4 INTERNATIONAL CONTROL AND DISPLAY SYMBOLS

80be4788

5

4	High Dages	40	Dean Window Weeken
1	High Beam	13	Rear Window Washer
2	Fog Lamps	14	Fuel
3	Headlamp, Parking Lamps, Panel Lamps	15	Engine Coolant Temperature
4	Turn Warning	16	Battery Charging Condition
5	Hazard Warning	17	Engine Oil
6	Windshield Washer	18	Seat Belt
7	Windshield Wiper	19	Brake Failure
8	Windshield Wiper and Washer	20	Parking Brake
9	Windscreen Demisting and Defrosting	21	Front Hood
10	Ventilating Fan	22	Rear hood (Decklid)
11	Rear Window Defogger	23	Horn
12	Rear Window Wiper	24	Lighter

6 INTRODUCTION — CS

METRIC SYSTEM

DESCRIPTION

The metric system is based on quantities of one, ten, one hundred, one thousand and one million.

The following chart will assist in converting metric units to equivalent English and SAE units, or vise versa.

CONVERSION FORMULAS AND EQUIVALENT VALUES

MULTIPLY	BY	TO GET	MULTIPLY	BY	TO GET
in-lbs	x 0.11298	= Newton Meters (N⋅m)	N-m	x 8.851	= in-lbs
ft-lbs	x 1.3558	= Newton Meters (N⋅m)	N⋅m	x 0.7376	= ft-lbs
Inches Hg (60° F)	x 3.377	= Kilopascals (kPa)	kPa	x 0.2961	= Inches Hg
psi	x 6.895	= Kilopascals (kPa)	kPa	x 0.145	= psi
Inches	x 25.4	= Millimeters (mm)	mm	x 0.03937	= Inches
Feet	x 0.3048	= Meters (M)	М	x 3.281	= Feet
Yards	x 0.9144	= Meters	М	x 1.0936	= Yards
mph	x 1.6093	= Kilometers/Hr. (Km/h)	Km/h	x 0.6214	= mph
Feet/Sec	x 0.3048	= Meters/Sec (M/S)	M/S	x 3.281	= Feet/Sec
mph	x 0.4470	= Meters/Sec (M/S)	M/S	x 2.237	= mph
Kilometers/Hr. (Km/h)	x 0.27778	= Meters/Sec (M/S)	M/S	x 3.600	Kilometers/Hr. (Km/h)

COMMON METRIC EQUIVALENTS

1 inch = 25 Millimeters	1 Cubic Inch = 16 Cubic Centimeters
1 Foot = 0.3 Meter	1 Cubic Foot = 0.03 Cubic Meter
1 Yard = 0.9 Meter	1 Cubic Yard = 0.8 Cubic Meter
1 Mile = 1.6 Kilometers	

Refer to the Metric Conversion Chart to convert torque values listed in metric Newton- meters ($N \cdot m$). Also, use the chart to convert between millimeters (mm) and inches (in.) (Fig. 5).

METRIC SYSTEM (Continued)

in-lbs to N•m

Nem to in-lbs

in-1b	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N•m	in-lb
2 4 6 8 10 12	.2260 .4519 .6779 .9039 1.1298 1.3558 1.5818	42 44 46 48 50 52 54	4.7453 4.9713 5.1972 5.4232 5.6492 5.8751 6.1011	82 84 86 88 90 92 94	9.2646 9.4906 9.7165 9.9425 10.1685 10.3944 10.6204	122 124 126 128 130 132 134	13.7839 14.0099 14.2359 14.4618 14.6878 14.9138 15.1397	162 164 166 168 170 172 174	18.3032 18.5292 18.7552 18.9811 19.2071 19.4331 19.6590	.2 .4 .6 .8 1 1.2 1.4 1.6	1.7702 3.5404 5.3107 7.0809 8.8511 10.6213 12.3916 14.1618	N•m 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6	37.1747 38.9449 40.7152 42.4854 44.2556 46.0258 47.7961 49.5663	8.2 8.4 8.6 8.8 9 9.2 9.4	72.5792 74.3494 76.1197 77.8899 79.6601 81.4303 83.2006 84.9708	12.2 12.4 12.6 12.8 13 13.2 13.4	in-lb 107.9837 109.7539 111.5242 113.2944 115.0646 116.8348 118.6051 120.3753	16.2 16.4 16.6 16.8 17 17.2 17.4	
16 18 20 22 24 26 28 30 32 34 36 38 40	1.8077 2.0337 2.2597 2.4856 2.7116 2.9376 3.1635 3.3895 3.6155 3.8414 4.0674 4.2934 4.5193	58 60 62 64 66 68 70 72 74 76 78	6.3270 6.5530 6.7790 7.0049 7.2309 7.4569 7.6828 7.9088 8.1348 8.3607 8.5867 8.8127 9.0386	102 104 106 108 110 112 114 116 118	10.8464 11.0723 11.2983 11.5243 11.7502 11.9762 12.2022 12.4281 12.6541 12.8801 13.1060 13.3320 13.5580	138 140 142 144 146 150 152 154 156 158	15.3657 15.5917 15.8176 16.0436 16.2696 16.4955 16.7215 16.9475 17.1734 17.3994 17.6253 17.8513 18.0773	178 180 182 184 186 188 190 192 194 196 198	19.8850 20.1110 20.3369 20.5629 20.7889 21.0148 21.2408 21.4668 21.6927 21.9187 22.1447 22.3706 22.5966	1.6 1.8 2 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4	15.9320 17.7022 19.4725 21.2427 23.0129 24.7831 26.5534 28.3236 30.0938 31.8640	5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8	49.3063 51.3365 53.1067 54.8770 56.6472 58.4174 60.1876 61.9579 63.7281 65.4983 67.2685 69.0388 70.8090	9.8 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8	86.7410 88.5112 90.2815 92.0517 93.8219 97.3624 99.1326 100.9028 102.6730 104.4433 106.2135	13.8 14 14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 15.8	122.1455 123.9157 125.6860 127.4562 129.2264 130.9966 132.7669 134.5371 136.3073 138.0775 139.8478 141.6180	17.8 18.5 19.5 20 20.5 21 22 23 24	157.5500 159.3202 163.7458 168.1714 172.5970 177.0225 181.4480 185.8736 194.7247 203.5759 212.4270 221.2781

ft-lbs to N•m

Nom to ft-lbs

ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	N∙m	ft-lb	N•m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb
1	1.3558	21	28.4722	41	55.5885	61	82.7049	81	109.8212	1	.7376	21	15,9888	41	30.2400	61	44.9913	81	59.7425
2	2.7116	22	29.8280	42	56,9444	62	84.0607	82	111.1770	2	1.4751	22	16.2264	42	30.9776	62	45.7289	82	60.4801
3	4.0675	23	31.1838	43	58.3002	63	85.4165	83	112.5328	3	2.2127	23	16.9639	43	31.7152	63	46.4664	83	61.2177
4	5.4233	24	32.5396	44	59.6560	64	86.7723	84	113.8888	4	2.9502	24	17.7015	44	32.4527	64	47.2040	84	61.9552
5	6.7791	25	33.8954	45	61.0118	65	88.1281	85	115.2446	5	3.6878	25	18.4391	45	33.1903	65	47.9415	85	62.6928
6	8.1349	26	35.2513	46	62.3676	66	89.4840	86	116.6004	6	4.4254	26	19.1766	46	33.9279	66	48.6791	86	63.4303
7	9.4907	27	36.6071	47	63.7234	67	90.8398	87	117.9562	7	5.1629	27	19.9142	47	34.6654	67	49.4167	87	64.1679
8	10.8465	28	37.9629	48	65.0793	68	92, 1956	88	119.3120	8	5.9005	28	20.6517	48	35.4030	68	50.1542	88	64.9545
9	12.2024	29	39.3187	49	66.4351	69	93.5514	89	120.6678	9	6.6381	29	21.3893	49	36.1405	69	50.8918	89	65.6430
10	13.5582	30	40.6745	50	67.7909	70	94.9073	90	122.0236	10	7.3756	30	22.1269	50	36.8781	70	51.6293	90	66.3806
11	14.9140	31	42.0304	51	69.1467	71	96.2631	91	123.3794	11	8.1132	31	22.8644	51	37.6157	71	52.3669	91	67.1181
12	16.2698	32	43.3862	52	70.5025	72	97.6189	92	124.7352	12	8.8507	32	23.6020	52	38.3532	72	53.1045	92	67.8557
13	17.6256	33	44.7420	53	71.8583	73	98.9747	93	126.0910	.13	9.5883	33	24.3395	53	39.0908	73	53.8420	93	68.5933
14	18.9815	34	46.0978	54	73.2142	74	100.3316	94	127.4468	14	10.3259	34	25.0771	54	39.8284	74	54.5720		69.3308
15	20.3373	35	47.4536	55	74.5700	75	101.6862	95	128.8026	15	11.0634	35	25.8147	55	40.5659	75	55.3172	95	70.0684
16	21.6931	36	48.8094	56	75.9258	76	103.0422	96	130.1586	16	11.8010	36	26.5522	56	41.3035	76	56.0547	96	70.8060
17	23.0489	37	50.1653	57	<i>7</i> 7.2816	77	104.3980	97	131.5144	17	12.5386	37	27.2898	57	42.0410	77	56.7923		71.5435
18	24.4047	38	51.5211	58	78.6374	78	105.7538	98	132.8702	18	13.2761	38	28.0274	58	42.7786	78	57.5298		72.2811
19	25.7605	39	52.8769	59	79.9933	79	107.1196	99	134.2260	19	14.0137	39	28.7649	59	43.5162	79	58.2674	99	73.0187
20	27.1164	40	54.2327	60	81.3491	80	108.4654	100	135.5820	20	14.7512	40	29.5025	60	44.2537	80	59.0050	100	73.7562

in. to mm

mm to in.

in.	mm	in.	mm	in.	mm	in.	mm ·	in.	mm	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
.01	.254	.21	5.334	.41	10.414	.61	15.494	.81	20.574	.01	.00039	.21	.00827	.41	.01614	.61	.02402	.81	.03189
.02	.508	.22	5.588	.42	10.668	.62	15.748	.82	20.828	.02	.00079	.22	.00866	.42	.01654	.62	.02441	.82	.03228
.03	.762	.23	5.842	.43	10.922	.63	16.002	.83	21.082	.03	.00118	.23	.00906	.43	.01693	.63	.02480	.83	.03268
.04	1.016	.24	6.096	.44	11.1 <i>7</i> 6	.64	16.256	.84	21.336	.04	.00157	.24	.00945	.44	.01732	.64	.02520	.84	.03307
.05	1.270	.25	6.350	.45	11.430	.65	16.510	.85	21.590	.05	.00197	.25	.00984	.45	.01 <i>77</i> 2	.65	.02559	.85	.03346
.06	1.524	.26	6.604	.46	11.684	.66	16.764	.86	21.844	.06	.00236	.26	.01024	.46	.01811	.66	.02598	.86	.03386
.07	1.778	.27	6.858	.47	11.938	.67	17.018	.87	22.098	.07	.00276	.27	.01063	.47	.01850	.67	.02638	.87	.03425
.08	2.032	.28	7.112	.48	12.192	.68	17.272	.88	22.352	.08	.00315	.28	.01102	.48	.01890	.68	.02677	.88	.03465
.09	2.286	.29	7.366	.49	12.446	.69	17.526	.89	22.606	.09	.00354	.29	.01142	.49	.01929	.69	.02717	.89	.03504
.10	2.540	.30	7.620	.50	12.700	.70	17.780	.90	22.860	.10	.00394	.30	.01181	.50	.01969	.70	.02756	.90	.03543
.11	2.794	.31	7.874	.51	12.954	.71	18.034	.91	23.114	.11	.00433	.31	.01220	.51	.02008	.71	.02795	.91	.03583
.12	3.048	.32	8.128	.52	13.208	.72	18.288	.92	23.368	.12	.00472	.32	.01260	.52	.02047	.72	.02835	.92	.03622
.13	3.302	.33	8.382	.53	13.462	.73	18.542	.93	23.622	.13	.00512	.33	.01299	.53	.02087	.73	.02874	.93	.03661
.14	3.556	.34	8.636	.54	13.716	.74	18.796	.94	23.876	.14	.00551	.34	.01339	.54	.02126	.74	.02913	.94	.03701
.15	3.810	.35	8.890	.55	13.970	.75	19.050	.95	24.130	.15	.00591	.35	.01378	.55	.02165	.75	.02953	.95	.03740
.16	4.064	.36	9.144	.56	14.224	.76	19.304	.96	24.384	.16	.00630	.36	.01417	.56	.02205	.76	.02992	.96	.03780
.17	3.318	.37	9.398	.57	14.478	.77	19.558	.97	24.638	.17	.00669	.37	.01457	.57	.02244	.77	.03032	.97	.03819
.18	4.572	.38	9.652	.58	14.732	.78	19.812	.98	24.892	.18	.00709	.38	.01496	.58	.02283	.78	.03071	.98	.03858
.19	4.826	.39	9.906	.59	14.986	.79	20.066	.99	25.146	.19	.00748	.39	.01535	.59	.02323	.79	.03110	.99	.03898
.20	5.080	.40	10.160	.60	15.240	.80	20.320	1.00	25.400	.20	.00787	.40	.01 <i>5</i> 75	.60	.02362	.80	.03150	1.00	.03937

8 INTRODUCTION — CS

TORQUE REFERENCES

tions Chart for torque references not listed in the individual torque charts (Fig. 6).

DESCRIPTION

Individual Torque Charts appear within many or the Groups. Refer to the Standard Torque Specifica-

SPECIFIED TORQUE FOR STANDARD BOLTS

Class	Diameter mm	Pitch mm	Specified torque					
			Hexagon head bolt			Hexagon flange bolt		
			N∙m	kgf-cm	ft-lbf	N∙m	kgf-cm	ft-lbf
	6	1	5	55	48 inlbf	6	60	52 inlbf
	8	1.25	12.5	130	9	14	145	10
4 T	10	1.25	26	260	19	29	290	21
	12	1.25	47	480	35	53	540	39
	14	1.5	74	<i>7</i> 60	55	84	850	61
	16	1.5	115	1,150	83		_	
	6	1	6.5	65	56 inlbf	7.5	75	65 inlbf
	8	1.25	15.5	160	12	1 <i>7.</i> 5	1 <i>75</i>	13
<i>5</i> T	10	1.25	32	330	24	36	360	26
	12	1.25	59	600	43	65	6 7 0	48
	14	1.5	91	930	67	100	1,050	76
	16	1.5	140	1,400	101	_	· 	
6 T	6	1	8	80	69 in1bf	9	90	—— 78 inlb l
	8	1.25	19	195	14	21	210	15
	10	1.25	39	400	29	44	440	32
	12	1.25	<i>7</i> 1	730	53	80	810	59
	14	1.5	110	1,100	80	125	1,250	90
	16	1.5	170	1,750	127	_	_	_
	6	1	10.5	110	8	12	120	9
	8	1.25	25	260	19	28	290	21
<i>7</i> T	10	1.25	52	530	38	58	590	43
	12	1.25	95	9 7 0	<i>7</i> 0	105	1,050	76
	14	1.5	145	1,500	108	165	1,700	123
	16	1.5	230	2,300	166	_	_	_
	8	1.25	29	300	22	33	330	24
8T	10	1.25	61	620	45	68	690	50
	12	1.25	110	1,100	80	120	1,250	90
91	8	1.25	34	340	25	37	380	27
	10	1.25	70	710	51	78	790	<i>57</i>
	12	1.25	125	1,300	94	140	1,450	105
10T	8	1.25	38	390	28	42	430	31
	10	1.25	78	800	58	88	890	64
	12	1.25	140	1,450	105	155	1,600	116
	8	1.25	42	430	31	47	480	35
117	10	1.25	87	890	64	97	990	72
	12	1.25	155	1,600	116	175	1,800	130

Fig. 6 TORQUE SPECIFICATIONS

VEHICLE IDENTIFICATION NUMBER

DESCRIPTION

The Vehicle Identification Number (VIN) can be viewed through the windshield at the upper left corner of the instrument panel, near the left windshield pillar (Fig. 7). The VIN consists of 17 characters in a combination of letters and numbers that provide specific information about the vehicle. Refer to VIN Code Breakdown Chart for decoding information.

To protect the consumer from theft and possible fraud the manufacturer is required to include a Check Digit at the ninth position of the vehicle identification number. The check digit is used by the manufacturer and government agencies to verify the authenticity of the vehicle and official documentation. The formula to use the check digit is not released to the general public.

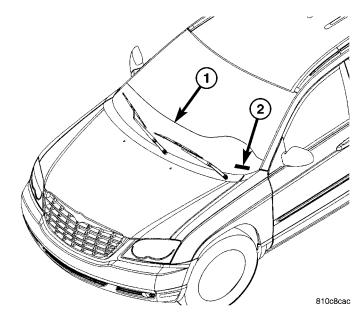


Fig. 7 VEHICLE IDENTIFICATION NUMBER (VIN)

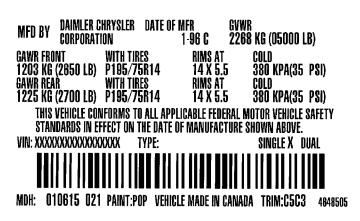
- 1 INSTRUMENT PANEL
- 2 VEHICLE IDENTIFICATION NUMBER (VIN)

VIN CODE BREAKDOWN CHART

POSITION	INTERPRETATION	CODE = DESCRIPTION		
1	Country of Origin	1 = Manufactured by DaimlerChrysler Corporation		
		2 = Manufactured by DaimlerChrysler Canada Inc.		
2	Make	C = Chrysler		
3 Vehicle Type		4 = Multipurpose Passenger Vehicle Less Side Airbags		
		8 = Multipurpose Passenger Vehicle With Side Airbags		
4	Gross Vehicle Weight Rating	F = 1815 - 2267 kg. (4001 - 5000 lbs.)		
		G = 2268 - 2721 kg. (5001 - 6000)		
5	Car Line	F = Pacifica - AWD		
		M = Pacifica - FWD		
6	Series	5 = Premium		
		6 = Sport		
7	Body Style	8 = Sport Utility 4 Door		
8	Engine	4 = 3.5L V6 cyl. 24 -Valve Gasoline (MPI)		
9	Check Digit	See explanation in this section.		
10	Model Year	4 = 2004		
11	Assembly Plant	R = Windsor Assembly		
12 through 17 Sequence Number		A six digit number assigned by assembly plant.		

VEHICLE CERTIFICATION LABEL

DESCRIPTION


A vehicle certification label is attached to the rear shutface of the driver's door (Fig. 8). This label indicates date of manufacture (month and year), Gross Vehicle Weight Rating (GVWR), Gross Axle Weight Rating (GAWR) front, Gross Axle Weight Rating (GAWR) rear and the Vehicle Identification Number (VIN). The Month, Day and Hour of manufacture is also included.

All communications or inquiries regarding the vehicle should include the Month-Day-Hour and Vehicle Identification Number.

VECI LABEL

DESCRIPTION

All models have a Vehicle Emission Control Information (VECI) Label. DaimlerChrysler permanently attaches the label in the engine compartment. It can-

8086df7b

Fig. 8 VEHICLE CERTIFICATION LABEL - TYPICAL

not be removed without defacing information and destroying the label.

The label contains the vehicle's emission specifications and vacuum hose routings. All hoses must be connected and routed according to the label.

2222

LUBRICATION & MAINTENANCE

TABLE OF CONTENTS

2222

page	pago
	FLUID CAPACITIES SPECIFICATIONS - FLUID CAPACITIES
	DESCRIPTION
OIL3	DESCRIPTION
DESCRIPTION - FUEL REQUIREMENTS4 DESCRIPTION - FUEL REQUIREMENTS -	STANDARD PROCEDURE - HOISTING21 JUMP STARTING
DESCRIPTION - ENGINE OIL - DIESEL	STANDARD PROCEDURE - JUMP STARTING . 21 TOWING STANDARD PROCEDURE - TOWING
DESCRIPTION - AWD REAR DRIVELINE MODULE FLUIDS6	
DESCRIPTION - AWD POWER TRANSFER	

INTERNATIONAL SYMBOLS

DESCRIPTION

DaimlerChrysler Corporation uses international symbols to identify engine compartment lubricant and fluid inspection and fill locations (Fig. 1).

	ENGINE OIL		BRAKE FLUID
ATTEN TO	AUTOMATIC TRANSMISSION FLUID	\bigcirc	POWER STEERING FLUID
	ENGINE COOLANT	\bigoplus	WINDSHIELD WASHER FLUID

8097ddbd

Fig. 1 INTERNATIONAL SYMBOLS

FLUID TYPES

DESCRIPTION

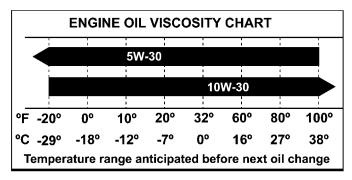
DESCRIPTION - ENGINE OIL AND LUBRICANTS

WARNING: NEW OR USED ENGINE OIL CAN BE IRRITATING TO THE SKIN. AVOID PROLONGED OR REPEATED SKIN CONTACT WITH ENGINE OIL. CONTAMINANTS IN USED ENGINE OIL, CAUSED BY INTERNAL COMBUSTION, CAN BE HAZARDOUS TO YOUR HEALTH. THOROUGHLY WASH EXPOSED SKIN WITH SOAP AND WATER. DO NOT WASH SKIN WITH GASOLINE, DIESEL FUEL, THINNER, OR SOLVENTS, HEALTH PROBLEMS CAN RESULT. DO NOT POLLUTE, DISPOSE OF USED ENGINE OIL PROPERLY. CONTACT YOUR DEALER OR GOVERN-MENT AGENCY FOR LOCATION OF COLLECTION CENTER IN YOUR AREA.

When service is required, DaimlerChrysler Corporation recommends that only Mopar® brand parts, lubricants and chemicals be used. Mopar® provides the best engineered products for servicing DaimlerChrysler Corporation vehicles.

Only lubricants bearing designations defined by the following organization should be used.

FLUID TYPES (Continued)


- Society of Automotive Engineers (SAE)
- American Petroleum Institute (API)
- National Lubricating Grease Institute (NLGI)

API SERVICE GRADE CERTIFIED

Use an engine oil that is API Certified (GF-3). Mopar® provides engine oils, meeting Material Standard MS-6395, that meet or exceed this requirement.

SAE VISCOSITY

An SAE viscosity grade is used to specify the viscosity of engine oil. Use only engine oils with multiple viscosities such as 5W-30 or 10W-30. These are specified with a dual SAE viscosity grade which indicates the cold-to-hot temperature viscosity range. Select an engine oil that is best suited to your particular temperature range and variation (Fig. 2).

80990199

Fig. 2 TEMPERATURE/ENGINE OIL VISCOSITY
ENERGY CONSERVING OIL

An Energy Conserving type oil is recommended for gasoline engines. The designation of ENERGY CONSERVING is located on the label of an engine oil container.

CONTAINER IDENTIFICATION

Standard engine oil identification notations have been adopted to aid in the proper selection of engine oil. The identifying notations are located on the front label of engine oil plastic bottles and the top of engine oil cans (Fig. 3).

This symbol means that the oil has been certified by the American Petroleum Institute (API). Diamler-Chrysler only recommends API Certified (GF-3) engine oils that meet the requirements of Material Standard MS-6395. Use Mopar® or an equivalent oil meeting the specification MS-6395.

9400-9

Fig. 3 API SYMBOL

SYNTHETIC ENGINE OILS

There are a number of engine oils being promoted as either synthetic or semi-synthetic. If you chose to use such a product, use **only** those oils that meet the American Petroleum Institute (API) and SAE viscosity standard. Follow the service schedule that describes your driving type.

ENGINE OIL ADDITIVES/SUPPLEMENTS

The manufacturer **does not recommend** the addition of any engine oil additives/supplements to the specified engine oil. Engine oil additives/supplements should not be used to enhance engine oil performance. Engine oil additives/supplements should not be used to extend engine oil change intervals. No additive is known to be safe for engine durability and can degrade emission components. Additives can contain undesirable materials that harm the long term durability of engines by:

- Doubling the level of Phosphorus in the engine oil. The ILSAC (International Lubricant Standard Approval Committee) GF-2 and GF-3 standards require that engine oil contain no more than 0.10% Phosphorus to protect the vehicles emissions performance. Addition of engine oil additives/supplements can poison, from the added sulfur and phosphorus, catalysts and hinder efforts to guarantee emissions performance to 80,000 miles.
- Altering the viscosity characteristics of the engine oil so that it no longer meets the requirements of the specified viscosity grade.
- Creating potential for an undesirable additive compatibility interaction in the engine crankcase. Generally it is not desirable to mix additive packages from different suppliers in the crankcase; there have been reports of low temperature engine failures caused by additive package incompatibility with such mixtures.

GEAR LUBRICANTS

SAE ratings also apply to multigrade gear lubricants. In addition, API classification defines the lubricants usage. Such as API GL-5 and SAE 75W-90.

Thank you very much for your reading. Please click here and go back to our website. Then, you can download the complete manual instantly. No waiting.