

Document Title: Engine, description (EC240)	· ·	Information Type: Service Information	Date: 2014/9/10
Profile:			

Engine, description (EC240)

(CUMMINS C8.3-C)

- The engine is a 6-cylinder, 4-stroke, direct injected, turbocharged, water cooled assembly with a cast iron block and cylinder head.
- Gears in the engine gear case are hardened helical type for strength and reduced noise, arranged to provide quiet, smooth transmission of power.
- The cylinder block and head are designed with internal passages formed as sets for lubrication and cooling. The water pump and oil cooler are integrally mounted.
- The fan belt is a poly type V-belt for improved performance and an auto tension adjuster maintains belt tension.

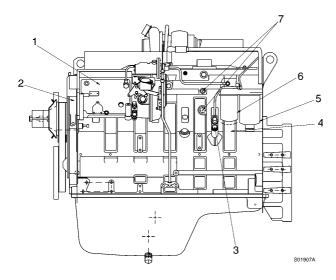


Figure 1 Engine, structure (EC240)

- 1. Fuel injection pump
- 2. Engine data plate
- 3. Fuel feed pump
- 4. Engine oil pressure sensor port (1/8" NPTF)
- 5. Fuel primary filter/water separator
- 6. Fuel secondary filter
- 7. Water inlet/outlet (1/2" NPTF)

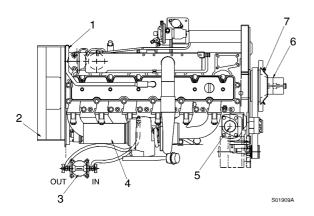


Figure 2 Engine, top view (EC240)

- 1. Breather hose
- 2. Flywheel housing
- 3. Water filter
- 4. Exhaust gas pipe
- 5. Thermostat
- 6. Fan spacer
- 7. Fan drive pulley

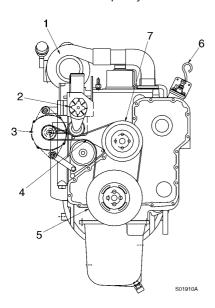


Figure 3 Engine, front view (EC240)

- 1. Turbocharger
- 2. Automatic belt tensioner
- 3. Alternator
- 4. Fan belt
- 5. Vibration damper
- 6. Dipstick gauge
- 7. Fan drive pulley

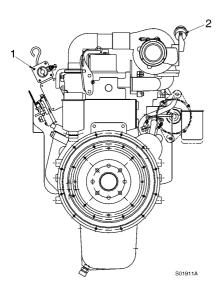


Figure 4 Engine, rear view (EC240)

- 1. Fuel shut–off solenoid
- 2. Turbocharger wastegate

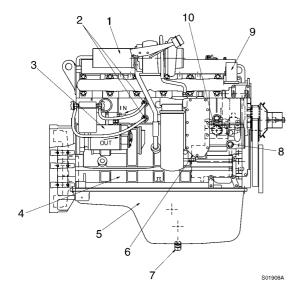


Figure 5
Engine turbocharger, side view (EC240)

- 1. Exhaust gas discharge port
- 2. Water filter connecting port (1/2" NPTF)
- 3. Starter
- 4. Engine block
- 5. Oil pan
- 6. Engine oil cooler
- 7. Engine oil drain valve (M18 \times 1.5P)
- 8. Temperature switch (for auto warm up)
- 9. Water outlet
- 10. Water inlet

Engine characteristic curve Engine characteristics

Specification	KSR 1004
Specification	K3K 1004

Rated output	170 ps / 2000 rpm
Max. torque (Net)	76.5 kgf·m / 1500 rpm (552 lbf·ft / 1500 rpm)
Min. fuel consumption	154 g / ps·h
Rated fuel consumption	160 g / ps·h

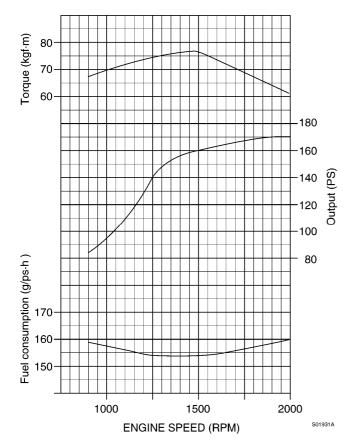


Figure 6 Engine, characteristic curve (EC240)

NOTE!

For detailed information on the engine, consult the separate engine service manual.

Document Title: Engine, specifications	Information Type: Service Information	Date: 2014/9/10
Profile:		

Engine, specifications

Specifications

Item		Unit	EC210	EC240	
Make		_	Cummins diesel		
Model		_	B 5.9–C	C 8.3–C	
Туре –		-	4–stroke, 6–cylinder, water cooling, upright series, direct injection, diesel engine, turbo-charged, aftercooled	cooling, upright series, direct	
Rated output		PS / rpm	145 / 1900	170/2000	
Maximum torqu (Net)	ie	kgf·m / rpm (lbf·ft / rpm)	63 / 1500 (455 / 1500)	76.5 / 1500 (722 /1500)	
Number of cylir Bore×Stroke	mber of cylinder mm re×Stroke		6 – 102 × 120	6 – 114 × 135	
Total displacem	ent	cc(cu·in)	5880(358)	8270(505)	
Compression ra	tio	_	17.3:1	17.5:1	
Low idle (No-lo	ad)	rpm	800 ~ 900	800~900	
High idle (No-le	oad)		2030 ~ 2110	2130~2210	
Firing order		_	1-5-3-6-2-4		
Nozzle pressure	2	kgf / cm2 (psi)	245 (3484)	265 (3768)	
Valve	Inlet	mm	0.25 (0.010)	0.30 (0.012)	
clearance	Exhaust	(inch)	0.51 (0.020)	0.61 (0.024)	
Turbocharger		_	Installed		
Fan –		Suction			
Drive		V-rib belt			
Weight of engine (dry / wet) kg		kg	416 / 458	624 / 658	
lb		lb	915 / 1009	1375 / 1450	

Document Title: Valve clearance adjustment	! '	Information Type: Service Information	Date: 2014/9/10
Profile:			

Valve clearance adjustment

Cummins B5.9-C (EC210 series)

Valves must be correctly adjusted for the engine to operate efficiently. Valve adjustment must be performed using the specified values.

Adjust the valves at each 1000 hours or 1 year maintenance interval.

All the valve adjustments must be made when the engine is cold and stabilized coolant temperature is 60°C or below.

• Turn the valve adjustment screws in until touching the push rod sockets, and then loosen them one full turn. Use 1/2" drive, Part No. 3377371 Engine Barring Tool.

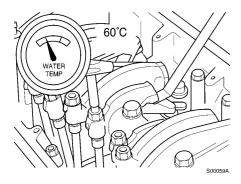


Figure 1 Valve clearance adjustment condition

• Locate top dead center for cylinder No.1 by rotating the crankshaft slowly while pressing on the engine timing pin. When the pin engages the hole in the camshaft gear, cylinder No.1 is at top dead center on the compression stroke.

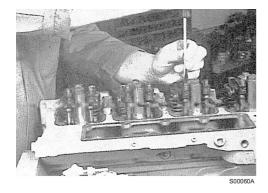


Figure 2 Valve clearance

Inlet valve	0.25 mm	0.010 in
Exhaust valve	0.51 mm	0.020 in

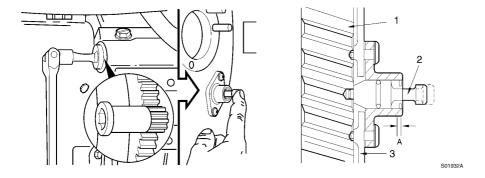


Figure 3 Rotation, camshaft gear

- 1. Camshaft gear
- 2. Timing pin
- 3. Gear housing
- A. Compression stroke

ACAUTION

Disengage the timing pin. Engine components may be damaged if the engine is rotated with the timing pin engaged.

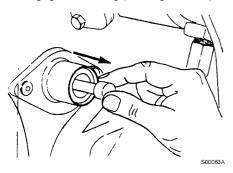


Figure 4 Removal, timing pin

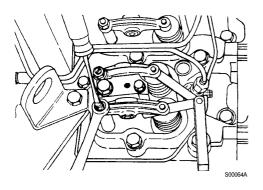


Figure 5
Adjustment, clearance between the valve stem and rocker lever

Tools: 14 mm spanner, "-" screwdriver, feeler gauge.

- The clearance is correct when slight resistance is felt as the feeler gauge is moved between the valve stem and rocker lever. At that point, tighten the lock nut. (Tightening torque: 24 N·m)
- Adjust the valves indicated (*) in the table below.

• After tightening the lock nut, check the valve clearance again. If the clearance is not correct, readjust.

Valves to be adjusted (*)

Cylinder	1	2	3	4	5	6
Inlet (I)	*	*		*		
Exhaust (E)	*		*		*	

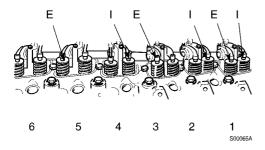


Figure 6 Valves to be adjusted

Be sure the timing pin is disengaged.

NOTE!

Mark the crankpulley and cover.

NOTE!

Rotate the crankshaft 360°.

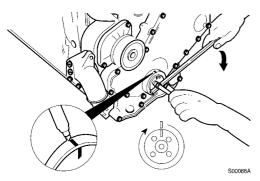


Figure 7 Marking, crankpulley

Adjust the valves indicated (*) in the table below.
 After tightening the lock nut, check the valve clearance again.
 If the clearance is not correct, readjust.

Valves to be adjusted (*)

Cylinder	1	2	3	4	5	6
Inlet (I)			*		*	*
Exhaust (E)		*		*		*

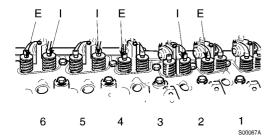


Figure 8 Valves to be adjusted

• Assemble the gaskets, valve covers, o-rings and special screws.

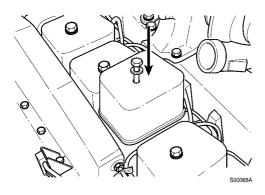


Figure 9 Assembly, valve covers

Tools: 16 mm spanner

Tightening torque: 24 N·m (18 lbf·ft)

NOTE!

Check valve covers and o-rings. If damaged, replace with a new one.

Injection nozzles installation

Assemble a sealing washer on each injection nozzle. Use only one sealing washer.

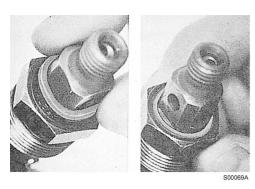


Figure 10
Assembly, injection nozzles

• Apply anti–seize compound to the threads of the injector hold–down nut and between the top of the nut and injector body.

Figure 11
Apply, anti-seize compound

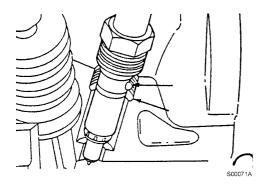


Figure 12
Installation, injection nozzle

Tools : 16 mm spanner, 24 mm Deep socket Tightening torque : 60 N·m (44 lbf·ft)

NOTE!

Install the injection nozzle. The protrusion on the injector body fits into a notch in the cylinder head to position the injector. Tighten the injection nozzle nuts.

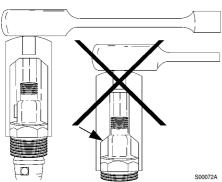


Figure 13 Tightening, injection nozzle

NOTE!

Some sockets can damage the sealing surface of the fuel drain outlet.

Cummins C8.3-C (EC240 series)

Valve clearance adjustment

Valves must be correctly adjusted for the engine to operate efficiently. Valve adjustment must be performed using the specified values.

Adjust the valves at each 1000 hours or 1 year maintenance interval.

All the valve adjustments must be made when the engine is cold, and stabilized coolant temperature is 60°C or below.

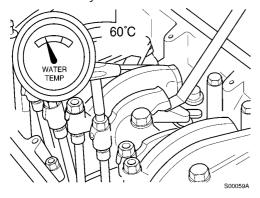


Figure 14 Adjustment condition

Valve clearance

Inlet valve	0.30 mm	0.012 in
Exhaust valve	0.61 mm	0.024 in

• Remove the air inlet hose.

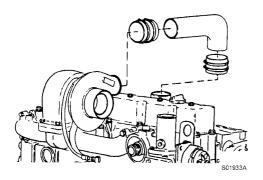


Figure 15 Removal, inlet hose

• Remove the wastegate sensing line, support clamps and crankcase vent tube.

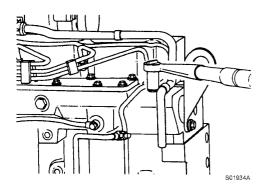


Figure 16 Removal. crankcase vent tube

Tools: 13, 18 mm Socket

• Remove the valve cover.

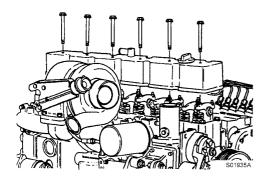


Figure 17 Removal, valve cover

Tools: 15 mm Wrench

• Locate top dead center for cylinder No.1 by rotating the crankshaft slowly while pressing on the engine timing pin.

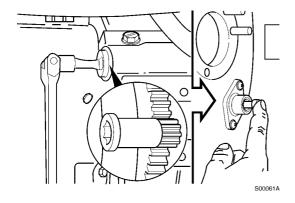


Figure 18 Rotation, camshaft gear

Tools: 1/2" driver, Part No. 3377371 Engine Barring tool.

• When the pin engages the hole in the camshaft gear, cylinder No. 1 is at top dead center on the compression stroke.

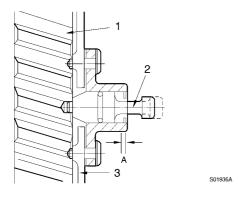


Figure 19 Position, cylinder No.1

- 1. Camshaft gear
- 2. Engine timing pin
- 3. Gear housing
- A. Compression stroke

Disengage the timing pin. Engine components may be damaged if the engine is rotated with the timing pin engaged.

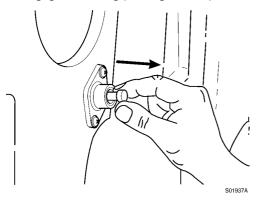


Figure 20 Removal, timing pin

To prevent damage of push rod, make sure the adjusting screw ball is positioned in the socket of the push rod when tightening.

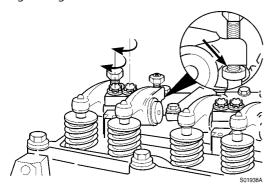


Figure 21 Position, adjusting screw ball

- The clearance is correct when slight resistance is felt as the feeler gauge is moved between the valve stem and rocker lever.
 - At that point, tighten the lock nut.

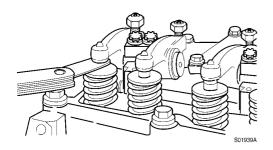


Figure 22 Checking, clearance

Tools: Spanner 14mm, "-" Driver, feeler gauge.

Adjust the valves indicated (*) in the table below.
 After tightening the lock nut, check the valve clearance again.

If the clearance is not correct, readjust.

Valves to be adjusted (*)

Cylinder	1	2	3	4	5	6
Inlet (I)	*	*		*		
Exhaust (E)	*		*		*	

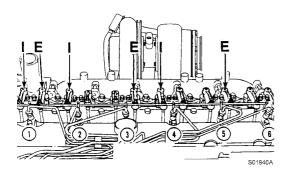


Figure 23 Valves to be adjusted

Be sure the timing pin is disengaged.

- Mark the crankpulley and cover.
- Rotate the crankshaft 360°.

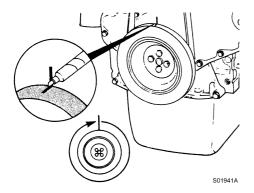


Figure 24 Marking, crankpulley

Adjust the valves indicated (*) in the table below.
 After tightening the lock nut, check the valve clearance again.
 If the clearance is not correct, readjust.

Valves to be adjusted (*)

Cylinder	1	2	3	4	5	6
Inlet (I)		*		*	*	
Exhaust (E)		*		*		*

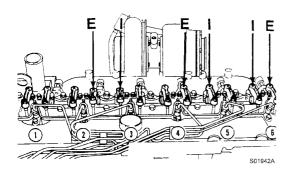


Figure 25 Valves to be adjusted

Valve cover-installation

• Install the rubber seal into the groove in the valve cover. Start the installation at the overlap area shown in the illustration.

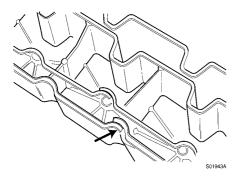


Figure 26 Assembly, rubber seal

- Do not stretch the rubber seal. If the seal has more overlap than shown in this illustration, trim the excess to provide the proper overlap.
- Install new o-rings on the valve cover screws.

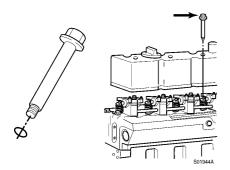


Figure 27 Assembly, o-ring

NOTE!

Engines equipped with wastegate turbochargers must have a studded screw installed in the third hole from the front. This is for the wastegate actuator hose clamp.

• Install the valve cover screws and tighten in the sequence shown.

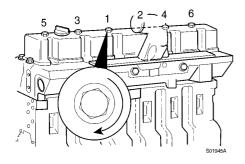


Figure 28
Screw tightening sequence

Tools: 15 mm spanner

Tightening torque : 24 N·m (18 lbf·ft)

Crankcase breather tube-installation

Install the breather tube and hose clamps.

• Tighten the screws for the breather tube support brackets.

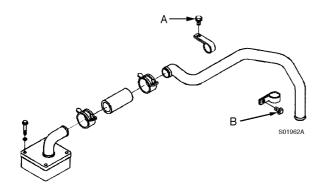


Figure 29 Assembly, breather tube

Tightening torque: A = 24 N·m (18 lbf·ft), B = 43 N·m (32 lbf·ft)

Tools: 13, 18 mm spanner

Injection nozzles-installation

- Lubricate the sealing lips of the sleeve with anti-seize compound. Assemble the injection nozzle, the sealing sleeve, a new copper washer and the hold-down clamp.
- Use only one washer.
- A light coat of clean 15W–40 engine oil between the washer and the injection nozzle will aid in holding the washer in place during installation.

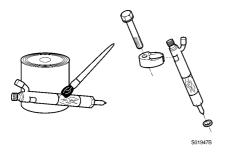


Figure 30

Apply, anti-seize compound

• Install the hold-down injection nozzle assembly into the injection nozzle bore. The injector leak—off connection must be toward the valve cover.

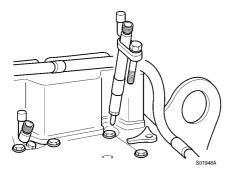


Figure 31 Assembly, injection nozzle

Install the hold-down screw.

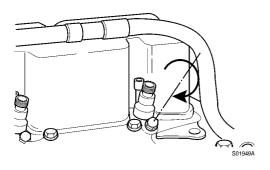


Figure 32 Screw in, hold-down screw

Tightening torque: 24 N·m (18 lbf·ft)

Tools: 13 mm spanner

Document Title: Engine mounting	, , , , , , , , , , , , , , , , , , ,	Date: 2014/9/10
Profile:		

Engine mounting

<Front - fan side view>

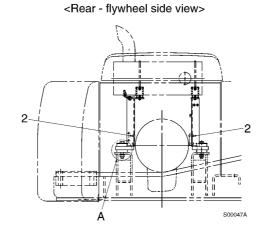


Figure 1
Engine mounting, side view

Tightening torque, unit: kgf·m (lbf·ft)

No.	Mounting position	EC210	EC210 EC240		
1	Engine mounting bracket (front)	M12 x 1.75 x 35L	M12 x 1.75 x 30		
		11 ~ 12 (79 ~ 87)	11 ~ 12 (79 ~ 87)		
2	Engine mounting bracket (rear)	M12 x 1.75 x 35L	M12 x 1.75 x 50L		
		7.2 ~ 8.4 (52 ~ 61)			
3	Engine mounting cushion M22 x 2.5 x 1				
		63 ~ 76 (455 ~ 549)	63 ~ 76 (455 ~ 549)		

NOTE!

Check the color markings for cushion installation.

A - details (cushion)

Figure 2 Cushion

EC210	
	Front (fan side)–Yellow and white
	Rear (flywheel side)–Blue and white

EC240		
	•	Front (fan side)–Green and white Rear (flywheel side)–Blue and white

Document Title: Lubricating description	system,	'	Information Type: Service Information	Date: 2014/9/10
Profile:				

Lubricating system, description

• Engine lubricating oil is supplied to the contact faces of rotating components such as turbocharger, crankshaft, camshaft, piston, inlet/exhaust valve, rocker arm and timing gear by means of forced lubrication from the oil pump.

Lubricating oil flow diagram

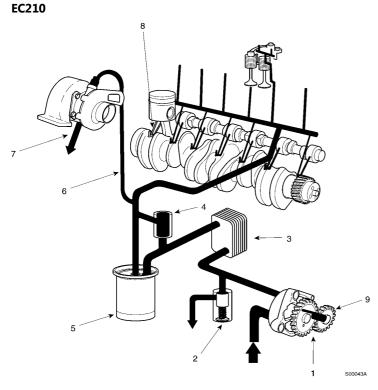


Figure 1 Lubrication oil flow (EC210)

- 1. Oil pump
- 2. Pressure regulating valve
- 3. Oil cooler
- 4. Filter bypass valve
- 5. Oil filter
- 6. Turbocharger oil supply
- 7. Turbocharger to oil pan
- 8. Piston cooling nozzle
- 9. Oil pump idler gear

EC240

Thank you very much for reading.

This is part of the demo page.

GET MORE:

Hydraulic System, Setting Instructions, Functional Description, Electrical System And more.....

Click Here BUY NOW

Then Instant Download the Complete Manual.

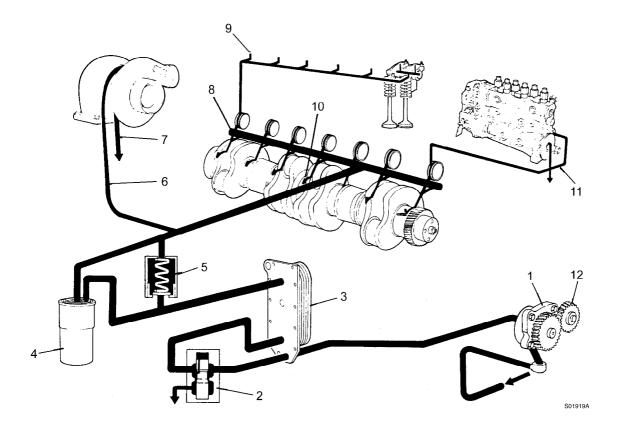


Figure 2 Lubrication oil flow (EC240)

- 1. Oil pump
- Pressure regulating valve 2.
- 3. Oil cooler
- Oil filter 4.
- Filter bypass valve 5.
- 6. Turbocharger oil supply
- Turbocharger oil drain Main oil supply circuit 7.
- 8.
- Rocker lever oil supply (#7 cam bushing) 9.
- 10. Piston cooling nozzle
- Injection pump oil supply (#1 cam bushing)
 Oil pump idler gear 11.
- 12.

Service Information

Document Title: Lubricating specifications	system,	'	Information Type: Service Information	Date: 2014/9/10
Profile:				

Lubricating system, specifications

Specifications

Item		Unit	EC210	EC240
Lubricating		_	Forced circulation	Forced circulation
Oil pressure	Low	kgf/cm2 (psi)	0.7~2.1 (10~30)	
	Rated		2.1~3.5 (30~50)	
Engine oil pan capacity		Liter	24	25.5
		gal	6.3	6.7