GROUP TAB LOCATOR

Introduction	
(0) Lubrication \& Maintenance	
2 Suspension	
3 Differential \& Driveline	
5 Brakes	
6 Clutch	
7 Cooling	
8A Audio/Video	
$8 B$ Chime/Buzzer	
8E Electronic Control Modules	
8F Engine Systems	
8G Heated Systems	
8H Horn	
81 Ignition Control	
8J Instrument Cluster	
8L Lamps	
8N Power System	
80 Restraints	
8P Speed Control	
80 Vehicle Theft Security	
8R Wipers/Washers	
8W Wiring	
9 Engine	
11 Exhaust System	
13 Frame \& Bumpers	
14 Fuel System	
19 Steering	
21 Transmission and Transfer Case	
22 Tires/Wheels	
23 Body	
24 Heating \& Air Conditioning	
25 Emissions Control	
Component and System Index	
Service Manual Comment Forms	(Rear of Manual)

INTRODUCTION

TABLE OF CONTENTS

page	page
VEHICLE IDENTIFICATION NUMBER	FASTENER IDENTIFICATION
DESCRIPTION . 1	DESCRIPTION . 6
VEHICLE EMISSION CONTROL INFORMATION	FASTENER USAGE
(VECI) LABEL	DESCRIPTION
DESCRIPTION . 2	DESCRIPTION - FASTENER USAGE 9
VEHICLE CERTIFICATION LABEL	DESCRIPTION - THREADED HOLE REPAIR . . 9
DESCRIPTION . 2	METRIC SYSTEM
BODY CODE PLATE	DESCRIPTION . 10
DESCRIPTION	TORQUE REFERENCES
BODY CODE PLATE 3	DESCRIPTION . 12
INTERNATIONAL SYMBOLS	
DESCRIPTION 5	
VEHICLE IDENTIFICATION	- Vehicle Safety Certification Label.
NUMBER	- Frame rail. To protect the consumer from theft and possible
DESCRIPTION	fraud the manufacturer is required to include a
The Vehicle Identification Number (VIN) plate is	Check Digit at the ninth position of the Vehicle Identification Number. The check digit is used by the
located on the lower windshield fence near the left	manufacturer and government agencies to verify the
A-pillar. The VIN contains 17 characters that provide	authenticity of the vehicle and official documenta-
data concerning the vehicle. Refer to the VIN decod-	tion. The formula to use the check digit is not
ing chart to determine the identification of a vehicle.	released to the general public.

VEHICLE IDENTIFICATION NUMBER DECODING CHART

POSITION	INTERPRETATION	CODE = DESCRIPTION
1	Country of Origin	1 = Manufactured By DaimlerChrysler Corporation
2	Make	$J=$ Jeep
3	Vehicle Type	4 = MPV
4	Gross Vehicle Weight Rating	$\begin{aligned} & \mathrm{E}=3001-4000 \mathrm{lbs} . \\ & \mathrm{F}=4001-5000 \mathrm{lbs} . \end{aligned}$
5	Vehicle Line	$\begin{aligned} & \mathrm{A}=\text { Wrangler 4X4 (LHD) } \\ & 4=\text { Wrangler 4X4 (RHD) } \end{aligned}$
6	Series	$\begin{gathered} 2=\text { SE } \\ 3=X \\ 4=\text { Sport } \\ 5=\text { Sahara } \\ 6 \text { = Rubicon } \end{gathered}$
7	Body Style	9 = Open Body
8	Engine	$\begin{gathered} 1=2.4 \mathrm{~L} 4 \text { cyl DOHC Gasoline } \\ \mathrm{S}=4.0 \mathrm{~L} 6 \mathrm{cyl} \text { Gasoline } \end{gathered}$

VEHICLE IDENTIFICATION NUMBER (Continued)

POSITION	INTERPRETATION	CODE $=$ DESCRIPTION	
9	Check Digit	0 through 9 or X	
10	Model Year	$4=2004$	
11	Assembly Plant	$\mathrm{P}=$ Toledo \#2	
12 thru 17		Vehicle Build Sequence	

VEHICLE EMISSION CONTROL INFORMATION (VECI) LABEL

DESCRIPTION

All models have a Vehicle Emission Control Information (VECI) Label. DaimlerChrysler permanently attaches the label in the engine compartment (Fig. 1). It cannot be removed without defacing information and destroying the label.

The label contains the vehicle's emission specifications and vacuum hose routings. All hoses must be connected and routed according to the label.

The VECI label contains the following:

- Engine family and displacement
- Evaporative family
- Emission control system schematic
- Certification application
- Engine timing specifications (if adjustable)
- Idle speeds (if adjustable)
- Spark plug and gap

The label also contains an engine vacuum schematic. These labels are permanently attached and cannot be removed without defacing information and destroying label.

Fig. 1 VECI Label Location

VEHICLE CERTIFICATION LABEL

DESCRIPTION

A vehicle certification label (Fig. 2) is attached to every DaimlerChrysler Corporation vehicle. The label certifies that the vehicle conforms to all applicable Federal Motor Vehicle Standards. The label also lists:

- Month and year of vehicle manufacture.
- Gross Vehicle Weight Rating (GVWR). The gross front and rear axle weight ratings (GAWR's) are based on a minimum rim size and maximum cold tire inflation pressure.
- Vehicle Identification Number (VIN).
- Type of vehicle.
- Type of rear wheels.
- Bar code.
- Month, Day and Hour (MDH) of final assembly.
- Paint and Trim codes.
- Country of origin.

The label is located on the driver-side door shutface.

8086d77b
Fig. 2 VEHICLE CERTIFICATION LABEL - TYPICAL

BODY CODE PLATE

DESCRIPTION

BODY CODE PLATE

A metal body code plate is attached to the floor pan under the drivers seat (Fig. 3). Disengage the snaps attaching the carpet to the floor pan to read the information. There are seven lines of information on the body code plate. Lines 4, 5, 6, and 7 are not used to define service information. Information reads from left to right, starting with line 3 in the center of the plate to line 1 at the bottom of the plate (Fig. 4).

Fig. 3 Body Code Plate Location
1-SNAP
2 - REAR CARPET
3 - BODY CODE PLATE
4 - SNAP
5 - FLOOR PAN
6 - FRONT CARPET

The last code imprinted on a vehicle code plate will be followed by the imprinted word END. When two vehicle code plates are required, the last available spaces on the first plate will be imprinted with the letters CTD (for continued).
When a second vehicle code plate is necessary, the first four spaces on each row will not be used because of the plate overlap.

Fig. 4 Body Code Plate Decoding
1 - PRIMARY PAINT
2 - SECONDARY PAINT
3 - ROOF
4 - CAR LINE SHELL
5 - ENGINE
6 - TRIM
7 - VIN
8 - MARKET
9 - TRANSMISSION
10 - PAINT PROCEDURE
11 - VEHICLE ORDER NUMBER

BODY CODE PLATE (Continued)

BODY CODE PLATE—LINE 3
DIGITS 1 THROUGH 12
Vehicle Order Number
DIGITS 13, 14, AND 15
Roof

- VJN = Soft Top White
- $\mathrm{VJU}=$ Soft Top Spice
- VJX = Soft Top Black
- VKN = Hard Top White
- VKU = Hard Top Spice
- VKX = Hard Top Black

DIGITS 16, 17, AND 18
Car Line Shell

- TJJ = Wrangler (LHD)
- $\mathrm{TJU}=$ Wrangler (RHD)

DIGIT 19
Price Class

- $\mathrm{L}=$ Wrangler (All)

DIGITS 20 AND 21
Body Type

- 77 = Wheel Base (93.4 in.)

BODY CODE PLATE—LINE 2

DIGITS 1,2, AND 3
Paint Procedure
DIGIT 4
Open Space
DIGITS 5 THROUGH 8
Primary Paint
(Refer to 23 - BODY/PAINT - SPECIFICATIONS)
for color codes.

DIGITS 10 THROUGH 13
Secondary Paint
DIGIT 14
Open Space
DIGITS 15 THROUGH 18
Interior Trim Code
DIGIT 19
Open Space
DIGITS 20, 21, AND 22
Engine Code

- ED1 = 2.4L 4 cyl. MPI Gasoline
- $\mathrm{ERH}=4.0 \mathrm{~L} 6$ cyl. MPI Gasoline

BODY CODE PLATE—LINE 1

DIGITS 1, 2, AND 3

Transmission Codes

- DDD = NV3550 5 - speed Manual
- DDK = AX15 5 - speed Manual
- DG6 = 42RLE $4-$ speed Automatic

DIGIT 4
Open Space
DIGIT 5
Market Code

- $\mathrm{B}=$ International

DIGIT 6
Open Space
DIGITS 7 THROUGH 23
Vehicle Identification Number (VIN)
(Refer to VEHICLE DATA/VEHICLE INFORMATION/VEHICLE IDENTIFICATION NUMBER DESCRIPTION) for breakdown of VIN code.

DIGIT 9
Open Space

INTERNATIONAL SYMBOLS

DESCRIPTION

The graphic symbols illustrated in the following International Control and Display Symbols Chart (Fig. 5) are used to identify various instrument controls. The symbols correspond to the controls and displays that are located on the instrument panel.

80be4788
Fig. 5 INTERNATIONAL CONTROL AND DISPLAY SYMBOLS

1	High Beam	13	Rear Window Washer
2	Fog Lamps	14	Fuel
3	Headlamp, Parking Lamps, Panel Lamps	15	Engine Coolant Temperature
4	Turn Warning	16	Battery Charging Condition
5	Hazard Warning	17	Engine Oil
6	Windshield Washer	18	Seat Belt
7	Windshield Wiper	19	Brake Failure
8	Windshield Wiper and Washer	20	Parking Brake
9	Windscreen Demisting and Defrosting	21	Front Hood
10	Ventilating Fan	22	Rear hood (Decklid)
11	Rear Window Defogger	23	Horn
12	Rear Window Wiper	24	Lighter

FASTENER IDENTIFICATION

DESCRIPTION

The SAE bolt strength grades range from grade 2 to grade 8 . The higher the grade number, the greater the bolt strength. Identification is determined by the line marks on the top of each bolt head. The actual bolt strength grade corresponds to the number of line marks plus 2. The most commonly used metric bolt strength classes are 9.8 and 10.9. The metric strength class identification number is imprinted on the head of the bolt. The higher the class number, the greater the bolt strength. Some metric nuts are imprinted with a single-digit strength class on the nut face. Refer to the Fastener Identification and Fastener Strength Charts (Fig. 6) and (Fig. 7).

FASTENER IDENTIFICATION (Continued)
Bolt Markings and Torque - Metric
Commercial Steel Class

9.8					10.9				12.9			
Bolt Head Markings												
Body Size	Torque				Torque				Torque			
Diam.	Cast Iron		Aluminum		Cast Iron		Aluminum		Cast Iron		Aluminum	
mm	$\mathrm{N} \cdot \mathrm{m}$	fi-lb	$\mathrm{N} \cdot \mathrm{m}$	fi-lb	$\mathrm{N} \cdot \mathrm{m}$	fi-lb	$\mathrm{N} \cdot \mathrm{m}$	ftlb	$\mathrm{N} \bullet \mathrm{m}$	ft lb	$\mathrm{N} \cdot \mathrm{m}$	fflb
6	9	5	7	4	14	9	11	7	14	9	11	7
7	14	9	11	7	18	14	14	11	23	18	18	14
8	25	18	18	14	32	23	25	18	36	27	28	21
10	40	30	30	25	60	45	45	35	70	50	55	40
12	70	55	55	40	105	75	80	60	125	95	100	75
14	115	85	90	65	160	120	125	95	195	145	150	110
16	180	130	140	100	240	175	190	135	290	210	220	165
18	230	170	180	135	320	240	250	185	400	290	310	230

Bolt Markings and Torque Values - U.S. Customary

Body Size	Cast Iron		Aluminum		Cast Iron		Aluminum	
	$\mathrm{N} \cdot \mathrm{m}$	ft-lb	$\mathrm{N} \cdot \mathrm{m}$	f-lb	N•m	$\mathrm{ft}-\mathrm{lb}$	$\mathrm{N} \cdot \mathrm{m}$	ft-lb
1/4-20	9	7	8	6	15	11	12	9
- 28	12	9	9	7	18	13	14	10
5/16-18	20	15	16	12	30	22	24	18
- 24	23	17	19	14	33	24	25	19
3/8-16	40	30	25	20	55	40	40	30
- 24	40	30	35	25	60	45	45	35
7/16-14	60	45	45	35	90	65	65	50
- 20	65	50	55	40	95	70	75	55
1/2-13	95	70	75	55	130	95	100	75
- 20	100	75	80	60	150	110	120	90
9/16-12	135	100	110	80	190	140	150	110
-18	150	110	115	85	210	155	170	125
5/8-11	180	135	150	110	255	190	205	150
-18	210	155	160	120	290	215	230	170
3/4-10	325	240	255	190	460	340	365	270
-16	365	270	285	210	515	380	410	300
7/8-9	490	360	380	280	745	550	600	440
-14	530	390	420	310	825	610	660	490
1-8	720	530	570	420	1100	820	890	660
- 14	800	590	650	480	1200	890	960	710

Fig. 6 FASTENER IDENTIFICATION

FASTENER IDENTIFICATION (Continued)
HOW TO DETERMINE BOLT STRENGTH

Fig. 7 FASTENER STRENGTH

FASTENER USAGE

DESCRIPTION

DESCRIPTION - FASTENER USAGE

WARNING: USE OF AN INCORRECT FASTENER MAY RESULT IN COMPONENT DAMAGE OR PERSONAL INJURY.

Fasteners and torque specifications references in this Service Manual are identified in metric and SAE format.

During any maintenance or repair procedures, it is important to salvage all fasteners (nuts, bolts, etc.) for reassembly. If the fastener is not salvageable, a fastener of equivalent specification must be used.

DESCRIPTION - THREADED HOLE REPAIR

Most stripped threaded holes can be repaired using a Helicoil ${ }^{\circledR}$. Follow the vehicle or Helicoil ${ }^{\circledR}$ recommendations for application and repair procedures.

METRIC SYSTEM

DESCRIPTION

The metric system is based on quantities of one, ten, one hundred, one thousand and one million.

The following chart will assist in converting metric units to equivalent English and SAE units, or vise versa.

CONVERSION FORMULAS AND EQUIVALENT VALUES

MULTIPLY	BY	TO GET	MULTIPLY	BY	TO GET
in-Ibs	x 0.11298	= Newton Meters (N•m)	$\mathrm{N} \cdot \mathrm{m}$	x 8.851	= in-lbs
ft-lbs	$\times 1.3558$	= Newton Meters ($\mathrm{N} \cdot \mathrm{m}$)	$\mathrm{N} \cdot \mathrm{m}$	$\times 0.7376$	= ft-lbs
Inches Hg (60 ${ }^{\circ} \mathrm{F}$)	x 3.377	= Kilopascals (kPa)	kPa	x 0.2961	= Inches Hg
psi	x 6.895	= Kilopascals (kPa)	kPa	x 0.145	= psi
Inches	x 25.4	= Millimeters (mm)	mm	x 0.03937	= Inches
Feet	x 0.3048	= Meters (M)	M	x 3.281	= Feet
Yards	x 0.9144	= Meters	M	x 1.0936	= Yards
mph	x 1.6093	= Kilometers/Hr. (Km/h)	Km/h	$\times 0.6214$	= mph
Feet/Sec	x 0.3048	= Meters/Sec (M/S)	M/S	x 3.281	= Feet/Sec
mph	x 0.4470	= Meters/Sec (M/S)	M/S	x 2.237	= mph
Kilometers/Hr. (Km/h)	x 0.27778	= Meters/Sec (M/S)	M/S	x 3.600	Kilometers/Hr. (Km/h)

COMMON METRIC EQUIVALENTS

1 inch $=25$ Millimeters	1 Cubic Inch $=16$ Cubic Centimeters
1 Foot $=0.3$ Meter	1 Cubic Foot $=0.03$ Cubic Meter
1 Yard $=0.9$ Meter	1 Cubic Yard $=0.8$ Cubic Meter
1 Mile $=1.6$ Kilometers	

Refer to the Metric Conversion Chart to convert torque values listed in metric Newton- meters ($\mathrm{N} \cdot \mathrm{m}$). Also, use the chart to convert between millimeters (mm) and inches (in.) (Fig. 8).

METRIC SYSTEM (Continued)
in-lbs to $N \bullet m$
$\mathrm{N} \bullet \mathrm{m}$ to in -lbs

in- lb	$\mathrm{N} \cdot \mathrm{m}$	in-lb	$\mathrm{N} \cdot \mathrm{m}$	in-lb	$\mathrm{N} \cdot \mathrm{m}$	in-lb	N* m	in-lb	$\mathrm{N} \cdot \mathrm{m}$	N•m	in-lb	$\mathrm{N} \cdot \mathrm{m}$	in-lb						
2	. 2260	42	4.7453	82	9.2646	122	13.7839	162	18.3032	. 2	1.7702	4.2	37.1747	8.2	72.5792	12.2	107.9837	16.2	143.3882
4	4519	44	4.9713	84	9.4906	124	14.0099	164	18.5292	4	3.5404	4.4	38.9449	8.4	74.3494	12.4	109.7539	16.4	145.1584
6	. 6779	46	5. 1972	86	9.7165	126	14.2359	166	18.7552	. 6	5.3107	4.6	40.7152	8.6	76.1197	12.6	111.5242	16.6	146.9287
8	. 9039	48	5.4232	88	9.9425	128	14.4618	168	18.9811	. 8	7.0809	4.8	42.4854	8.8	77.8899	12.8	113.2944	16.8	148.6989
10	1.1298	50	5.6492	90	10.1685	130	14.6878	170	19.2071	1	8.8511	5	44.2556	9	79.6601	13	115.0646	17	150.4691 152.2393
12	1.3558	52	5.8751	92	10.3944	132	14.9138	172	19.4331	1.2	10.6213	5.2	46.0258	9.2	81.4303	13.2	116.8348	17.2	152.2393
14	1.5818	54	6.1011	94	10.6204	134	15.1397	174	19.6590	1.4	12.3916	5.4	47.7961	9.4	83.2006	13.4	118.6051	17.4	154.0096
16	1.8077	56	6.3270	96	10.8464	136	15.3657	176	19.8850	1.6	14.1618	5.6	49.5663	9.6	84.9708	13.6	120.3753	17.6	155.7798 157.5500
18	2.0337	58	6.5530	98	11.0723	138	15.5917	178	20.1110	1.8	15.9320	5.8	51.3365 53.1067	${ }^{9.8}$	86.7410	13.8	122.1455 123.9157	17.8 18	157.5500 159.3202
20	2.2597	60	6.7790	100	11.2983	140	15.8176	180	20.3369	2	17.7022	6	53.1067	10	88.5112 90.2815	14.	123.9157	18	159.3202 163.7458
22	2.4856	62	7.0049	102	11.5243	142	16.0436	182	20.5629	2.2	19.4725	6.2	54.8770	10.2	90.2815	14.2	125.6860	18.5	
24	2.7116	64	7.2309	104	11.7502	144	16.2696	184	20.7889	2.4	21.2427	6.4	56.6472	10.4	92.0517	14.4	127.4562	19	168.1714
26	2.9376	66	7.4569	106	11.9762	146	16.4955	186	21.0148	2.6	23.0129	6.6	58.4174	10.6	93.8219	14.6	129.2264	19.5	72.5970
28	3.1635	68	7.6828	108	12.2022	148	16.7215	188	21.2408	2.8	24.7831	6.8	60.1876	10.	95.5921	14.8	130.9966	205	177.0225
30	3.3895	70	7.9088	110	12.4281	150	16.9475	190	21.4668	3	26.5534	7	61.9579	11	97.3624	15	132.7669	20.5	181.4480
32	3.6155	72	8.1348	112	12.6541	152	17.1734	192	21.6927	3.2	28.3236	7.2	63.7281	11.2	99.1328	15.2	134.5371	21	85.8736
34	3.8414	74	8.3607	114	12.8801	154	17.3994	194	21.9187	3.4	30.0938	7.4	65.4983	11.4	100.9028	15.4	136.3073	22	194.7247
36	4.0674	76	8.5867	116	13.1060	156	17.6253	196	22.1447	3.6 3.8	31.8640	7.6 7.8	67.2685	11.6	102.6730	15.6 15.8	138.0775 1398478	23	203.5759
38	4.2934	78	8.8127	118	13.3320	158	17.8513	198	22.3706	3.8	33.6342	7.8	69.0388 70.8090	11.8	104.4433 106.2135	15.8	139.8478 141.6180	24	212.4270 221.2781
40	4.5193	80	9.0386	120	13.5580	160	18.0773	200	22.5966	4	35.4045	8	70.8090	12	106.2135	16	141.6180	25	221.2781

ft -lbs to $\mathrm{N} \bullet \mathrm{m}$
$\mathrm{N} \bullet \mathrm{m}$ to $\mathrm{ft}-\mathrm{lbs}$

$\mathrm{ft}-\mathrm{lb}$	N•m	ft-lb	$\mathrm{N} \cdot \mathrm{m}$	ft-lb	$\mathrm{N} \cdot \mathrm{m}$	ft-lb	N•m	$\mathrm{ft}-\mathrm{lb}$	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{N} \cdot \mathrm{m}$	ft-lb	$\mathrm{N} \cdot \mathrm{m}$	ft -lb	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{ft}-\mathrm{lb}$	$\mathrm{N} \cdot \mathrm{m}$	ft -lb	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{ft}-\mathrm{lb}$
1	1.3558	21	28.4722	41	55.5885	61	82.7049	81	109.8212	1	. 7376	21	15.9888	41	30.2400	61	44.9913	81	59.7425
2	2.7116	22	29.8280	42	56.9444	62	84.0607	82	111.1770	2	1.4751	22	16.2264	42	30.9776	62	45.7289	82	60.4801
3	4.0675	23	31.1838	43	58.3002	63	85.4165	83	112.5328	3	2.2127	23	16.9639	43	31.7152	63	46. 4664	83	61.2177
4	5.4233	24	32.5396	44	59.6560	64	86.7723	84	113.8888	4	2.9502	24	17.7015	44	32.4527	64	47.2040	84	61.9552
5	6.7791	25	33.8954	45	61.0118	65	88.1281	85	115.2446	5	3.6878	25	18.4391	45	33.1903	65	47.9415	85	62.6928
6	8.1349	26	35.2513	46	62.3676	66	89.4840	86	116.6004	6	4.4254	26	19.1766	46	33.9279	66	48.6791	86	63.4303
7	9.4907	27	36.6071	47	63.7234	67	90.8398	87	117.9562	7	5.1629	27	19.9142	47	34.6654	67	49.4167	87	64.1679
8	10.8465	28	37.9629	48	65.0793	68	92.1956	88	119.3120	8	5.9005	28	20.6517	48	35.4030	68	50.1542	88	64.9545
9	12.2024	29	39.3187	49	66.4351	69	93.5514	89	120.6678	9	6.6381	29	21.3893	49	36.1405	69	50.8918	89	65.6430
10	13.5582	30	40.6745	50	67.7909	70	94.9073	90	122.0236	10	7.3756	30	22.1269	50	36.8781	70	51.6293	90	66.3806
11	14.9140	31	42.0304	51	69.1467	71	96.2631	91	123.3794	11	8.1132	31	22.8644	51	37.6157	71	52.3669	91	67.1181
12	16.2698	32	43.3862	52	70.5025	72	97.6189	92	124.7352	12	8.8507	32	23.6020	52	38.3532	72	53.1045	92	67.8557
13	17.6256	33	44.7420	53	71.8583	73	98.9747	93	126.0910	. 13	9.5883	33	24.3395	53	39.0908	73	53.8420	93	68.5933
14	18.9815	34	46.0978	54	73.2142	74	100.3316	94	127.4468	14	10.3259	34	25.0771	54	39.8284	74	54.5720	94	69.3308
15	20.3373	35	47.4536	55	74.5700	75	101.6862	95	128.8026	15	11.0634	35	25.8147	55	40.5659	75	55.3172	95	70.0684
16	21.6931	36	48.8094	56	75.9258	76	103.0422	96	130.1586	16	11.8010	36	26.5522	56	41.3035	76	56.0547	96	70.8060
17	23.0489	37	50.1653	57	77.2816	77	104.3980	97	131.5144	17	12.5386	37	27.2898	57	42.0410	77	56.7923	97	71.5435
18	24.4047	38	51.5211	58	78.6374	78	105.7538	98	132.8702	18	13.2761	38	28.0274	58	42.7786	78	57.5298	98	72.2811
19	25.7605	39	52.8769	59	79.9933	79	107.1196	99	134.2260	19	14.0137	39	28.7649	59	43.5162	79	58.2674	99	73.0187
20	27.1164	40	54.2327	60	81.3491	80	108.4654	100	135.5820	20	14.7512	40	29.5025	60	44.2537	80	59.0050	100	73.7562

in. to mm
mm to in .

in.	mm	mm	in.																
01	254	. 21	5.334	. 41	10.414	. 61	15.494	. 81	20.574	. 01	. 00039	. 21	. 00827	. 41	. 01614	. 61	. 02402	. 81	. 03189
. 02	508	. 22	5.588	. 42	10.668	. 62	15.748	. 82	20.828	. 02	. 00079	. 22	. 00866	. 42	. 01654	. 62	02441	. 82	. 03228
. 03	. 762	. 23	5.842	. 43	10.922	. 63	16.002	. 83	21.082	. 03	. 00118	. 23	. 00906	. 43	. 01693	. 63	. 02480	. 83	. 03268
. 04	1.016	. 24	6.096	. 44	11.176	. 64	16.256	. 84	21.336	. 04	. 00157	. 24	. 00945	. 44	. 01732	. 64	. 02520	. 84	. 03307
. 05	1.270	. 25	6.350	. 45	11.430	. 65	16.510	. 85	21.590	. 05	. 00197	. 25	. 00984	. 45	. 01772	. 65	. 02559	. 85	. 03346
. 06	1.524	26	6.604	. 46	11.684	. 66	16.764	. 86	21.844	. 06	. 00236	. 26	. 01024	. 46	.01811	66	. 02598	. 86	. 03386
. 07	1.778	27	6.858	. 47	11.938	. 67	17.018	. 87	22.098	. 07	. 00276	. 27	. 01063	. 47	. 01850	. 67	. 02638	. 87	. 03425
. 08	2.032	28	7.112	. 48	12.192	. 68	17.272	. 88	22.352	. 08	. 00315	. 28	. 01102	. 48	. 01890	. 68	. 02677	88	. 03465
. 09	2.286	. 29	7.366	. 49	12.446	. 69	17.526	. 89	22.606	. 09	. 00354	. 29	. 01142	. 49	. 01929	. 69	. 02717	. 89	. 03504
. 10	2.540	30	7.620	. 50	12.700	. 70	17.780	. 90	22.860	. 10	. 00394	. 30	. 01181	. 50	. 01969	. 70	. 02756	. 90	. 03543
. 11	2.794	31	7.874	. 51	12.954	. 71	18.034	91	23.114	. 11	. 00433	. 31	. 01220	. 51	. 02008	. 71	. 02795	. 91	. 03583
. 12	3.048	32	8.128	. 52	13.208	. 72	18.288	. 92	23.368	. 12	. 00472	. 32	. 01260	. 52	. 02047	. 72	. 02835	. 92	. 03622
. 13	3.302	33	8.382	. 53	13.462	. 73	18.542	. 93	23.622	. 13	. 00512	. 33	. 01299	. 53	. 02087	. 73	. 02874	. 93	. 03661
. 14	3.556	34	8.636	. 54	13.716	. 74	18.796	. 94	23.876	. 14	. 00551	. 34	. 01339	. 54	. 02126	. 74	. 02913	94	. 03701
. 15	3.810	35	8.890	. 55	13.970	. 75	19.050	. 95	24.130	. 15	. 00591	. 35	. 01378	. 55	. 02165	. 75	. 02953	. 95	. 03740
. 16	4.064	36	9.144	. 56	14.224	. 76	19.304	. 96	24.384	16	. 00630	. 36	. 01417	. 56	. 02205	. 76	. 02992	. 96	. 03780
. 17	3.318	37	9.398	. 57	14.478	. 77	19.558	. 97	24.638	17	. 00669	. 37	. 01457	. 57	. 02244	77	. 03032	. 97	. 03819
. 18	4.572	38	9.652	58	14.732	. 78	19.812	98	24.892	. 18	. 00709	. 38	. 01496	. 58	. 02283	. 78	. 03071	98	03858
. 19	4.826	39	9.906	. 59	14.986	. 79	20.066	. 99	25.146	. 19	. 00748	. 39	. 01535	. 59	. 02323	. 79	. 03110	. 99	. 03898
. 20	5.080	40	10.160	. 60	15.240	. 80	20.320	1.00	25.400	. 20	. 00787	. 40	. 01575	. 60	. 02362	. 80	. 03150	1.00	. 03937

Fig. 8 METRIC CONVERSION CHART

TORQUE REFERENCES

DESCRIPTION

Individual Torque Charts appear within many or the Groups. Refer to the Standard Torque Specifica-
tions Chart for torque references not listed in the individual torque charts (Fig. 9).

SPECIFIED TORQUE FOR STANDARD BOLTS

Class	Diameter mm	Pitch mm	Specified torgue					
			Hexagon head bolt			Hexagon flange bolt		
			$\mathrm{N} \cdot \mathrm{m}$	kgf-cm	fillbf	$N \bullet$ m	kgf-cm	ff-lbf
$4 T$	6	1	5	55	48 in. -lbf	6	60	52 in . -lbf
	8	1.25	12.5	130	9	14	145	10
	10	1.25	26	260	19	29	290	21
	12	1.25	47	480	35	53	540	39
	14	1.5	74	760	55	84	850	61
	16	1.5	115	1,150	83	-	-	-
$5 T$	6	1	6.5	65	56 in. -lbf	7.5	75	65 in. llbf
	8	1.25	15.5	160	12	17.5	175	13
	10	1.25	32	330	24	36	360	26
	12	1.25	59	600	43	65	670	48
	14	1.5	91	930	67	100	1,050	76
	16	1.5	140	1,400	101	-	-	-
GT	6	1	8	80	$69 \mathrm{in}$. . IbF	9	90	78 in.-lbf
	8	1.25	19	195	14	21	210	15
	10	1.25	39	400	29	44	440	32
	12	1.25	71	730	53	80	810	59
	14	1.5	110	1,100	80	125	1,250	90
	16	1.5	170	1,750	127	-	-	-
71	6	1	10.5	110	8	12	120	9
	8	1.25	25	260	19	28	290	21
	10	1.25	52	530	38	58	590	43
	12	1.25	95	970	70	105	1,050	76
	14	1.5	145	1,500	108	165	1,700	123
	16	1.5	230	2,300	166	-	-	-
87	8	1.25	29	300	22	33	330	24
	10	1.25	61	620	45	68	690	50
	12	1.25	110	1,100	80	120	1,250	90
9 T	8	1.25	34	340	25	37	380	27
	10	1.25	70	710	51	78	790	57
	12	1.25	125	1,300	94	140	1,450	105
10 T	8	1.25	38	390	28	42	430	31
	10	1.25	78	800	58	88	890	64
	12	1.25	140	1,450	105	155	1,600	116
11 T	8	1.25	42	430	31	47	480	35
	10	1.25	87	890	64	97	990	72
	12	1.25	155	1,600	116	175	1,800	130

Fig. 9 TORQUE SPECIFICATIONS

LUBRICATION \& MAINTENANCE

TABLE OF CONTENTS

	page
INTERNATIONAL SYMBOLS	
DESCRIPTION	1
PARTS \& LUBRICANT RECOMMENDATION	
DESCRIPTION - LUBRICANT	
RECOMMENDATIONS	
FLUID TYPES	
DESCRIPTION	
DESCRIPTION - FUEL REQUIREMENTS	2
DESCRIPTION - ENGINE OIL AND	
LUBRICANTS . 3	
DESCRIPTION - HOAT COOLANT 4	
DESCRIPTION - TRANSFER CASE - NV231 . . 5	
DESCRIPTION - TRANSFER CASE - NV241 . . 5	
DESCRIPTION - AXLE LUBRICATION 5	
DESCRIPTION - MANUAL TRANSMISSION ... 5	
DESCRIPTION - AUTOMATIC	
TRANSMISSION FLUID 6	
DESCRIPTION - POWER STEERING FLUID .. 6	
OPERATION - AUTOMATIC TRANSMISSION	
FLUID	

INTERNATIONAL SYMBOLS

DESCRIPTION

DaimlerChrysler Corporation uses international symbols to identify engine compartment lubricant and fluid inspection and fill locations (Fig. 1).

Fig. 1 INTERNATIONAL SYMBOLS

FLUID CAPACITIES
SPECIFICATIONS - FLUID CAPACITIES 6
MAINTENANCE SCHEDULES
DESCRIPTION
DESCRIPTION - DOMESTIC SCHEDULES ... 7
DESCRIPTION - GASOLINE ENGINES EXPORT SCHEDULES13

DESCRIPTION - DIESEL ENGINES -
EXPORT SCHEDULES 18
HOISTING
STANDARD PROCEDURE - HOISTING
RECOMMENDATIONS21

TOWING
STANDARD PROCEDURE - TOWING
RECOMMENDATIONS22

JUMP STARTING

STANDARD PROCEDURE - JUMP STARTING PROCEDURE23
EMERGENCY TOW HOOKS

DESCRIPTION - EMERGENCY TOW HOOKS . 24

PARTS \& LUBRICANT RECOMMENDATION

DESCRIPTION - LUBRICANT RECOMMENDATIONS

Chassis

Component	Fluid, Lubricant, or Genuine Part
Steering Gear	Mopar® Multi-Purpose Lubricant
\& Linkage, Ball	NLGI Grade 2 EP, GC-LB
Joints, Prop	
Shafts \&	
Yokes, Wheel	
Bearings	

PARTS \& LUBRICANT RECOMMENDATION (Continued)

Body

Component	Fluid, Lubricant, or Genuine Part
Hinges: Door And Hood Liftgate	Mopar ${ }^{\circledR}$ Engine Oil Mopar ${ }^{\circledR}$ Multi-Purpose Lube NLGI Grade 2 EP, GC-LB
Latches: Door, Hood/Safety Catch, Liftgate	Mopar® Multi-Purpose Lube NLG Grade 2 EP, GC-LB
Seat Track	Mopar Grade 2 EP, GC-LB
Window System Components	Mopar ${ }^{\circledR}$ Spray White Lube
Lock Cylinders	Mopar ${ }^{\circledR}$ Lock Cylinder Lube
Parking Brake Mechanism	Mopar ${ }^{\circledR}$ Wheel Brg. Grease NLGI Grade 1, GC-LBB
Soft Top	 Lubricant

FLUID TYPES

DESCRIPTION

DESCRIPTION - FUEL REQUIREMENTS

Your engine is designed to meet all emissions regulations and provide excellent fuel economy and performance when using high quality unleaded "regular" gasoline having an octane rating of 87 . The routine use of premium gasoline is not recommended. Under normal conditions the use of premium fuel will not provide a benefit over high quality regular gasolines and in some circumstances may result in poorer performance.

Light spark knock at low engine speeds is not harmful to your engine. However, continued heavy spark knock at high speeds can cause damage and immediate service is required. Engine damage resulting from operation with a heavy spark knock may not be covered by the new vehicle warranty.

Poor quality gasoline can cause problems such as hard starting, stalling and hesitations. If you experience these symptoms, try another brand of gasoline before considering service for the vehicle.

Over 40 auto manufacturers world-wide have issued and endorsed consistent gasoline specifications
(the Worldwide Fuel Charter, WWFC) to define fuel properties necessary to deliver enhanced emissions, performance and durability for your vehicle. We recommend the use of gasolines that meet the WWFC specifications if they are available.

REFORMULATED GASOLINE

Many areas of the country require the use of cleaner burning gasoline referred to as "reformulated" gasoline. Reformulated gasoline contain oxygenates, and are specifically blended to reduce vehicle emissions and improve air quality.
We strongly support the use of reformulated gasoline. Properly blended reformulated gasoline will provide excellent performance and durability for the engine and fuel system components.

GASOLINE/OXYGENATE BLENDS

Some fuel suppliers blend unleaded gasoline with oxygenates such as 10% ethanol, MTBE, and ETBE. Oxygenates are required in some areas of the country during the winter months to reduce carbon monoxide emissions. Fuels blended with these oxygenates may be used in your vehicle.

CAUTION: DO NOT use gasoline containing METHANOL. Gasoline containing methanol may damage critical fuel system components.

MMT IN GASOLINE

MMT is a manganese-containing metallic additive that is blended into some gasoline to increase octane. Gasoline blended with MMT provide no performance advantage beyond gasoline of the same octane number without MMT. Gasoline blended with MMT reduce spark plug life and reduce emission system performance in some vehicles. We recommend that gasolines free of MMT be used in your vehicle. The MMT content of gasoline may not be indicated on the gasoline pump; therefore, you should ask your gasoline retailer whether or not his/her gasoline contains MMT.

It is even more important to look for gasoline without MMT in Canada because MMT can be used at levels higher than allowed in the United States. MMT is prohibited in Federal and California reformulated gasoline.

SULFUR IN GASOLINE

If you live in the northeast United States, your vehicle may have been designed to meet California low emission standards with Cleaner-Burning California reformulated gasoline with low sulfur. If such fuels are not available in states adopting California emission standards, your vehicles will operate satisfactorily on fuels meeting federal specifications, but

FLUID TYPES (Continued)

emission control system performance may be adversely affected. Gasoline sold outside of California is permitted to have higher sulfur levels which may affect the performance of the vehicle's catalytic converter. This may cause the Malfunction Indicator Lamp (MIL), Check Engine or Service Engine Soon light to illuminate. We recommend that you try a different brand of unleaded gasoline having lower sulfur to determine if the problem is fuel related prior to returning your vehicle to an authorized dealer for service.

CAUTION: If the Malfunction Indicator Lamp (MIL), Check Engine or Service Engine Soon light is flashing, immediate service is required; see on-board diagnostics system section.

MATERIALS ADDED TO FUEL

All gasoline sold in the United States and Canada are required to contain effective detergent additives. Use of additional detergents or other additives is not needed under normal conditions.

FUEL SYSTEM CAUTIONS

CAUTION: Follow these guidelines to maintain your vehicle's performance:

- The use of leaded gas is prohibited by Federal law. Using leaded gasoline can impair engine performance, damage the emission control system, and could result in loss of warranty coverage.
- An out-of-tune engine, or certain fuel or ignition malfunctions, can cause the catalytic converter to overheat. If you notice a pungent burning odor or some light smoke, your engine may be out of tune or malfunctioning and may require immediate service. Contact your dealer for service assistance.
- When pulling a heavy load or driving a fully loaded vehicle when the humidity is low and the temperature is high, use a premium unleaded fuel to help prevent spark knock. If spark knock persists, lighten the load, or engine piston damage may result.
- The use of fuel additives which are now being sold as octane enhancers is not recommended. Most of these products contain high concentrations of methanol. Fuel system damage or vehicle performance problems resulting from the use of such fuels or additives is not the responsibility of DaimlerChrysler Corporation and may not be covered under the new vehicle warranty.

NOTE: Intentional tampering with emissions control systems can result in civil penalties being assessed against you.

DESCRIPTION - ENGINE OIL AND LUBRICANTS

WARNING: NEW OR USED ENGINE OIL CAN BE IRRITATING TO THE SKIN. AVOID PROLONGED OR REPEATED SKIN CONTACT WITH ENGINE OIL. CONTAMINANTS IN USED ENGINE OIL, CAUSED BY INTERNAL COMBUSTION, CAN BE HAZARDOUS TO YOUR HEALTH. THOROUGHLY WASH EXPOSED SKIN WITH SOAP AND WATER. DO NOT WASH SKIN WITH GASOLINE, DIESEL FUEL, THINNER, OR SOLVENTS, HEALTH PROBLEMS CAN RESULT. DO NOT POLLUTE, DISPOSE OF USED ENGINE OIL PROPERLY. CONTACT YOUR DEALER OR GOVERNMENT AGENCY FOR LOCATION OF COLLECTION CENTER IN YOUR AREA.

When service is required, DaimlerChrysler Corporation recommends that only Mopar ${ }^{\circledR}$ brand parts, lubricants and chemicals be used. Mopar ${ }^{\circledR}$ provides the best engineered products for servicing DaimlerChrysler Corporation vehicles.

Only lubricants bearing designations defined by the following organization should be used.

- Society of Automotive Engineers (SAE)
- American Petroleum Institute (API)
- National Lubricating Grease Institute (NLGI)

API SERVICE GRADE CERTIFIED

Use an engine oil that is API Certified. MOPAR ${ }^{\circledR}$ provides engine oils, that meet or exceed this requirement.

SAE VISCOSITY

An SAE viscosity grade is used to specify the viscosity of engine oil. Use only engine oils with multiple viscosities such as $5 \mathrm{~W}-30$ or $10 \mathrm{~W}-30$. These are specified with a dual SAE viscosity grade which indicates the cold-to-hot temperature viscosity range. Select an engine oil that is best suited to your particular temperature range and variation (Fig. 2).

Fig. 2 Temperature/Engine Oil Viscosity

FLUID TYPES (Continued)

ENERGY CONSERVING OIL

An Energy Conserving type oil is recommended for gasoline engines. The designation of ENERGY CONSERVING is located on the label of an engine oil container.

CONTAINER IDENTIFICATION

Standard engine oil identification notations have been adopted to aid in the proper selection of engine oil. The identifying notations are located on the front label of engine oil plastic bottles and the top of engine oil cans (Fig. 3).

This symbol means that the oil has been certified by the American Petroleum Institute (API). DiamlerChrysler only recommend API Certified engine oils. Use Mopar® ${ }^{\circledR}$ engine oil or equivalent.

Fig. 3 API Certification Mark

GEAR LUBRICANTS

SAE ratings also apply to multigrade gear lubricants. In addition, API classification defines the lubricants usage. Such as API GL-5 and SAE 75W90.

LUBRICANTS AND GREASES

Lubricating grease is rated for quality and usage by the NLGI. All approved products have the NLGI symbol (Fig. 4) on the label. At the bottom of the NLGI symbol is the usage and quality identification letters. Wheel bearing lubricant is identified by the letter "G". Chassis lubricant is identified by the letter "L". The letter following the usage letter indicates the quality of the lubricant. The following symbols indicate the highest quality.

(1)

(2)

(3)

Fig. 4 NLGI SYMBOL

SPECIALIZED LUBRICANTS AND OILS

Some maintenance or repair procedures may require the use of specialized lubricants or oils. Consult the appropriate sections in this manual for the correct application of these lubricants.

DESCRIPTION - HOAT COOLANT

WARNING: ANTIFREEZE IS AN ETHYLENE-GLYCOL BASE COOLANT AND IS HARMFUL IF SWALLOWED OR INHALED. IF SWALLOWED, DRINK TWO GLASSES OF WATER AND INDUCE VOMITING. IF INHALED, MOVE TO FRESH AIR AREA. SEEK MEDICAL ATTENTION IMMEDIATELY. DO NOT STORE IN OPEN OR UNMARKED CONTAINERS. WASH SKIN AND CLOTHING THOROUGHLY AFTER COMING IN CONTACT WITH ETHYLENE-GLYCOL. KEEP OUT OF REACH OF CHILDREN. DISPOSE OF GLYCOL BASE COOLANT PROPERLY, CONTACT YOUR DEALER OR GOVERNMENT AGENCY FOR LOCATION OF COLLECTION CENTER IN YOUR AREA. DO NOT OPEN A COOLING SYSTEM WHEN THE ENGINE IS AT OPERATING TEMPERATURE OR HOT UNDER PRESSURE, PERSONAL INJURY CAN RESULT. AVOID RADIATOR COOLING FAN WHEN ENGINE COMPARTMENT RELATED SERVICE IS PERFORMED, PERSONAL INJURY CAN RESULT.

CAUTION: Use of Propylene-Glycol based coolants is not recommended, as they provide less freeze protection and less corrosion protection.

The cooling system is designed around the coolant. The coolant must accept heat from engine metal, in the cylinder head area near the exhaust valves and engine block. Then coolant carries the heat to the radiator where the tube/fin radiator can transfer the heat to the air.

The use of aluminum cylinder blocks, cylinder heads, and water pumps requires special corrosion protection. Mopar ${ }^{\circledR}$ Antifreeze/Coolant, 5 Year/100,000 Mile Formula (MS-9769), or the equivalent ethylene-glycol base coolant with organic corrosion inhibitors (called HOAT, for Hybrid Organic Additive Technology) is recommended. This coolant offers the best engine cooling without corrosion when mixed with 50% ethylene-glycol and 50% distilled water to obtain a freeze point of $-37^{\circ} \mathrm{C}\left(-35^{\circ} \mathrm{F}\right)$. If it loses color or becomes contaminated, drain, flush, and replace with fresh properly mixed coolant solution.

[^0]
FLUID TYPES (Continued)

CAUTION: Mopar ${ }^{\circledR}$ Antifreeze/Coolant, 5 Year/100,000 Mile Formula (MS-9769) may not be mixed with any other type of antifreeze. Mixing of coolants other than specified (non-HOAT or other HOAT), may result in engine damage that may not be covered under the new vehicle warranty, and decreased corrosion protection.

COOLANT PERFORMANCE

The required ethylene-glycol (antifreeze) and water mixture depends upon climate and vehicle operating conditions. The coolant performance of various mixtures follows:

Pure Water-Water can absorb more heat than a mixture of water and ethylene-glycol. This is for purpose of heat transfer only. Water also freezes at a higher temperature and allows corrosion.

100 percent Ethylene-Glycol-The corrosion inhibiting additives in ethylene-glycol need the presence of water to dissolve. Without water, additives form deposits in system. These act as insulation causing temperature to rise to as high as $149^{\circ} \mathrm{C}$ $\left(300^{\circ} \mathrm{F}\right)$. This temperature is hot enough to melt plastic and soften solder. The increased temperature can result in engine detonation. In addition, 100 percent ethylene-glycol freezes at $-22^{\circ} \mathrm{C}\left(-8^{\circ} \mathrm{F}\right)$.

50/50 Ethylene-Glycol and Water-Is the recommended mixture, it provides protection against freezing to $-37^{\circ} \mathrm{C}\left(-34^{\circ} \mathrm{F}\right)$. The antifreeze concentration must always be a minimum of 44 percent, year-round in all climates. If percentage is lower, engine parts may be eroded by cavitation. Maximum protection against freezing is provided with a 68 percent antifreeze concentration, which prevents freezing down to $-67.7^{\circ} \mathrm{C}\left(-90^{\circ} \mathrm{F}\right)$. A higher percentage will freeze at a warmer temperature. Also, a higher percentage of antifreeze can cause the engine to overheat because specific heat of antifreeze is lower than that of water.

CAUTION: Richer antifreeze mixtures cannot be measured with normal field equipment and can cause problems associated with 100 percent ethyl-ene-glycol.

COOLANT SELECTION AND ADDITIVES

The use of aluminum cylinder blocks, cylinder heads and water pumps requires special corrosion protection. Only Mopar ${ }^{\circledR}$ Antifreeze/Coolant, 5 Year/100,000 Mile Formula (glycol base coolant with corrosion inhibitors called HOAT, for Hybrid Organic Additive Technology) is recommended. This coolant offers the best engine cooling without corrosion when mixed with 50% distilled water to obtain to obtain a freeze point of $-37^{\circ} \mathrm{C}\left(-35^{\circ} \mathrm{F}\right)$. If it loses color or becomes contaminated, drain, flush, and replace with fresh properly mixed coolant solution.

CAUTION: Do not use coolant additives that are claimed to improve engine cooling.

DESCRIPTION - TRANSFER CASE - NV231

Recommended lubricant for the NV231 transfer case is Mopar® ATF +4 , Automatic Transmission Fluid.

DESCRIPTION - TRANSFER CASE - NV241

Recommended lubricant for the NV241 transfer case is Mopar ${ }^{\circledR}$ ATF +4 , Automatic Transmission Fluid.

DESCRIPTION - AXLE LUBRICATION

NOTE: DiamlerChrysler recommends using Mopar® ${ }^{\circledR}$ lubricants or lubricants of equal quality.

FRONT AXLE

- 181 FBI (Model 30) - Mopar® ${ }^{\circledR}$ Gear Lubricant 80W-90 (Trailer Towing Mopar ${ }^{\circledR}$ Synthetic Gear Lubricant 75W-140)
- 216 FBI (Model 44) - Mopar® Gear Lubricant 80W-90 (Trailer Towing Mopar ${ }^{\circledR}$ Synthetic Gear Lubricant 75W-140)
- RUBICON 216 FBI (Model 44) - Mopar ${ }^{\circledR}$ Synthetic Gear Lubricant 75W-140

REAR AXLE

- 194 RBI (Model 35) - Mopar ${ }^{\circledR}$ Gear Lubricant 80W-90 (Trailer Towing Mopar ${ }^{\circledR}$ Synthetic Gear Lubricant 75W-140)
- 194 RBI (Model 35) 4.56 Ratio - 2.4 L Enigne and 42 RLE Automatic Transmission - Mopar ${ }^{\circledR}$ Synthetic Gear Lubricant 75W-140
- 226 RBI (Model 44) - Mopar® ${ }^{\circledR}$ Gear Lubricant 80W-90 (Trailer Towing Mopar® Synthetic Gear Lubricant 75W-140)
- RUBICON 226 RBI (Model 44) - Mopar® ${ }^{\circledR}$ Synthetic Gear Lubricant 75W-140

NOTE: Trac-lok ${ }^{\circledR}$ equipped axles require 118 ml (4 ounces) of Limited Slip Additive in the lubricant.

DESCRIPTION - MANUAL TRANSMISSION

NOTE: DaimlerChrysler recommends using Mopar® ${ }^{\circledR}$ lubricants or lubricants of equal quality.

- NV1500 - Mopar ${ }^{\circledR}$ Manual Transmission Lubricant
- NV3550 - Mopar® ${ }^{\circledR}$ Manual Transmission Lubricant

Thank you very much

 for your reading. Please click here and go back to the website. download the complete manual instantly. No waiting.
[^0]: 1 - WHEEL BEARINGS
 2 - CHASSIS LUBRICATION
 3 - CHASSIS AND WHEEL BEARINGS

